Tag Archives: space race

Cluster of satellites in Earth's orbit.

Space junk is becoming a problem and we need to talk about it

When we think about junk, things like garbage bins or landfills come to mind — but there’s another junk problem, one that’s hard to see with the naked eye from the Earth. Space junk, researchers warn, is a growing problem, and if we don’t address it quickly, it may soon be too much to handle.

Satellites revolving around the earth. Image credits: ESA

There are a total of 6,542 satellites that are currently occupying Earth’s orbit, but only half of them are actually doing something. The other half are inactive — they’re simply junk. To make matters even more problematic, over 1,200 satellites were launched in 2020 — this marks a record, but generally speaking, we could expect more and more satellites to be plopped into orbit.

Now, imagine one day Earth’s orbit becomes overcrowded and two such large satellites hit each other. Both the satellites would get broken into smaller pieces that would further clash with other satellites and trigger a series of unstoppable collisions and a lot of junk pieces flying around. This has happened a few times already.

Due to these collisions, our planet’s orbit gets more and more cluttered with debris, to the extent that eventually, we will end up having no room to launch more rockets and satellites. Such a situation in which Earth’s orbit becomes completely unusable because of large amounts of space junk is referred to as Kessler syndrome — a phenomenon first envisioned by NASA scientist Donald J. Kessler in 1978.

Fortunately, we’re not at that stage yet. For now, space junk does not seem like a big problem but aerospace experts suggest that in the coming years, the number of satellite launches and space missions could increase dramatically, and this is likely to add more junk to space and make Earth’s orbit more crowded than ever. Simply put, if we don’t start taking action quickly, it will soon be too late.

What is space junk and why it’s dangerous?

Space junk is a generic term. Unusable satellite parts, rocket components, and debris of man-made machines in space are called “space junk”. Until now, NASA has tracked 27,000 such items that are aimlessly moving in Earth’s orbit. This orbital debris can move at a speed of 24,000 km/h (15,000 mph), and therefore any such fast-moving piece of junk can hit and destroy a functional satellite or a passing by rocket at any time.  

A graphical representation of debris in Earth’s orbit. Image credits: NASA

We’re already seeing some of this damage in action. In March 2021, the 18th Space Control Squadron (18SPCS), a space control unit under the US Space Force confirmed that a small debris piece named Object 48078 hit China’s Yunhai 1-02 satellite. According to Astrophysicist Jonathan McDowell, Object 48078 was a remnant of Zenet-2, a Russian rocket that was launched in the year 1996. McDowell further added that the “Yunhai 1-02 satellite broke up” after the collision. 

“Finding ways to remove at least some of all that space junk should be a top global priority.”

Donald Kessler, Retired NASA Scientist

However, such collisions due to space junk are still rare. Before the Yunhai 1-02 crash, the last collision reported was in 2009. Moreover, such collisions can be prevented by mission controllers by adjusting the position of a satellite. Every year many satellites are manoeuvered multiple times in order to avoid collision with space junk, even the International Space Station (ISS) has performed more than 20 junk avoidance maneuvers since its launch in 1998.

The space junk problem does not seem like a big issue for now but if not dealt with properly, it may lead to chaos in our planet’s orbit in the future — chaos that will be extremely difficult to address.

A small but growing problem

Before 2010, only around 100 satellites were launched every year but in the year 2020, for the first time, more than 1000 satellites were sent to space. The numbers continue to increase in 2021 as well because so far, 1400 new satellites have already been placed in orbit this year. 

Moreover, in the early days of space exploration, there used to be only a few agencies that would send satellites into space — like NASA, Roscosmos, and the European Space Agency. Nowadays, active private players like SpaceX and Blue Origin have created a boom in the aerospace industry and are launching more and more satellites. These companies are planning to launch mega-constellations (groups of satellites that cover large orbital area) in Earth’s orbit to provide wireless broadband internet services across the globe, in the coming years — an exciting project that is bound to help millions around the world, but which also poses new threats to the problem of space junk.

These mega-constellations would bring an unprecedented increase in the number of satellites revolving around Earth (a report suggests that the Earth’s orbit may have 100,000 satellites by 2030). With every launch, the amount of space junk will also increase making the orbit more congested. As a result, both the existing and new satellites will have to perform more collision avoidance maneuvers. 

Therefore, more fuel and resources would be spent on saving the satellites from space junk. Sooner or later, with an increasing number of space missions, the growing amounts of space junk might raise the frequency of outer space collisions and over the course of time, it could ultimately cause the Kessler syndrome.

Is it possible to free Earth’s orbit of space junk?

Cleaning up space junk is not as easy as it sounds. For starters, imposing a ban doesn’t seem like a promising idea.

Rockets are launched to explore space and collect information about other planets in our galaxy, whereas, man-made satellites are placed in Earth’s orbit in order to facilitate communication, navigation, military assistance, earth observation, weather forecast, mineral search, and many other activities that hold great importance for humans. Therefore, banning space missions and new satellite launches is obviously not a solution.

ELSA-d (End-of-Life Services by Astroscale-demonstration). Image credits: Astroscale/Wikimedia Commons

Cleaning our planet’s orbit is both an expensive and complicated process. However, researchers and space agencies are working on this and they keep coming up with new and interesting methods to remove space junk from Earth’s orbit.

Around 2012, a group of researchers working at EPFL (Swiss Federal Institute of Technology) came up with the idea of a special satellite (called CleanSpaceOne) that could attach itself to a targeted piece of space junk and drag the same back towards earth. The researchers proposed that during its journey to Earth, both the satellite and space junk would be burnt by the atmospheric heat.

This idea sounds promising, but it will also be costly, and bringing down satellites one at a time will be very time-consuming.

In 2016, the Japanese Aerospace Exploration Agency sent an electrodynamic tether in space that could direct space junk towards Earth’s atmosphere by using the planet’s magnetic field. A couple of years later, the Surrey Space Center in the UK launched the RemoveDEBRIS project in April 2018, this project was focused to encourage and demonstrate various space junk removal technologies. Under the RemoveDEBRIS initiative the effectiveness of methods involving net, harpoon, and drag sail for catching space junk was tested.

Researchers at Purdue University also developed a drag sail named Spinnaker3 in 2020. This powerful drag sail is an efficient and cost-effective way to deal with space junk as it does not require any fuel during its operation. Moreover, it can drag even rocket-sized space debris back to Earth’s atmosphere so that they get destroyed in peace. Spinnaker3 is expected to launch in November 2021 on a Firefly rocket.

A concept image of CleanSpaceOne chaser. Image credits: Lucpiguet/Wikimedia Commons

Astroscale, an orbital junk removal company from Japan, launched the ELSA-d (End-of-Life Services by Astroscale-demonstration) satellite in March 2021. This advanced debris removal system uses magnetic satellite catching technology to pick small inactive satellites from Earth’s orbit. ELSA-d successfully completed its first satellite capturing test on August 25, 2021, and it is now moving on to the next phases of its space junk removing process.  

The bottom line

As is generally the case, prevention is better than cure. In the case of space junk, it’s not yet a big problem — but by the time it becomes a big problem, it may be too big to handle efficiently, which is why it’s best to act as quickly as possible.

Aerospace experts are following this closely and if their research is supported, we’ll likely soon see effective waste-management strategies for space — and by the time we’re ready to go on our first interplanetary picnic, we’ll have a clean, green (hopefully), and beautiful orbital view.

A Big Blue Marble. A History of Earth from Space

“As the Sun came up I was absolutely blown away by how incredibly beautiful our planet Earth is. Absolutely breathtaking. Like someone took the most brilliant blue paint and painted a mural right in front of my eyes. I knew right then and there that I would never, ever see anything as beautiful as planet Earth again.”

Scott Kelly, Former NASA Astronaut
The Blue Marble. Taken by the crew of Apollo 17 in 1972 at a distance of 29,000 km above the planet. (NASA/Apollo 17 crew)

There is a common experience shared by human beings who visit that edge of space when they turn back and look upon their home planet. In that most fleeting of moments, they see the beauty and delicacy of our homeworld. It’s clearly not a view that many of us will get to experience in person, certainly not for the foreseeable future at least.

Despite that, thanks to some incredible photography and imaging techniques we too can view Earth from space and get a sense of our place in the solar system and the wider universe. 

The term ‘Big Blue Marble’ as it applies to Earth refers to an image captured of our planet by the Apollo 17 astronauts in December 1972. The image — officially designated as AS17–148–22727 by NASA— was taken at 29 thousand kilometres above the Earth by the crew of the spacecraft as it headed to the Moon.

Turning their view back on our planet, the astronomers caught a stunning image of the Mediterranean Sea to Antarctica. The image shows the south hemisphere heavily shrouded by clouds and represents the first time that an Apollo craft had been able to capture the southern polar ice caps.

The original uncropped AS17–148–22727 from which 'the Blue Marble' is taken. (NASA/Apollo 17 crew)
The original uncropped AS17–148–22727 from which ‘the Blue Marble’ is taken. (NASA/Apollo 17 crew)

Perhaps the most extraordinary thing about AS17-148-22727 is that it wasn’t supposed to exist. The crew weren’t scheduled to take an image at that point in their journey.

The fact that the photo was snapped very much during a ‘stolen moment’ aboard the craft and during a mission that was tightly scheduled down to the minute, makes the fleeting beauty it presents even more striking, as too does the fact that no human since has travelled far enough away from the surface of the planet to take such an image.

Since being taken ‘the Blue Marble’ has rightfully become one of the most reproduced images in human history. Though the most famous image of Earth from a space-based vantage point and a rare example of the glimpse of a fully illuminated globe, AS17–148–22727 is just one of a cavalcade of stunning images of our planet taken over seven decades.

The very first of these images were captured in perhaps the most unusual and ironic of circumstances. 

The Early days of Earth Photography: Recovering from War

“Consider again that dot [Earth]. That’s here. That’s home. That’s us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. The aggregate of our joy and suffering, thousands of confident religions, ideologies, and economic doctrines, every hunter and forager, every hero and coward, every creator and destroyer of civilization, every king and peasant, every young couple in love, every mother and father, hopeful child, inventor and explorer, every teacher of morals, every corrupt politician, every ‘superstar,’ every ‘supreme leader,’ every saint and sinner in the history of our species lived there – on a mote of dust suspended in a sunbeam.”

Carl Sagan, Pale Blue Dot: A Vision of the Human Future in Space
The first image of Earth taken from space in 1946 (White Sands Missile Range / Applied Physics Laboratory)

During the Second World War German V2s caused untold amounts of damage upon the cities of Europe, raining death from the skies and bringing profound fear and sorrow. It’s somewhat ironic then that the scientific marvel of the first image of Earth from space was delivered by one of these fearsome rockets.

Several V2s– Vergeltungswaffe 2, the world’s first long-range guided ballistic missiles–had been reclaimed by the United States as part of Operation Paperclip. The aim, however, was to use their incredible supersonic speed not to escape radar detection, as had been the case during the war, but to escape the confines of the atmosphere.

The rockets had their explosive payloads removed from their nosecones and replaced with scientific equipment.

On 24th October 1946, experiments with the V2s would result in a tangible benefit and a legitimate scientific breakthrough. A rocket launched from the White Sands Missile Range in New Mexico, USA, would capture an image of the Earth from an altitude of 105km. Up until this point in time, the highest an image of earth that had been taken was 22km by equipment aboard a high-altitude balloon.

The image was captured by a 35mm camera in the device’s nosecone which was set to capture a picture every 1.5 seconds. These images were then dropped back to earth in a steel canister and developed.

(White Sands Missile Range / Applied Physics Laboratory)

The V2 program and the series of experiments that it birthed would help US scientists lay the groundwork for future space exploration and was reflected by similar experiments in the Soviet Union at the time. These programs and the reclamation of German technology and the scientists behind it was responsible for launching the space race of the 1950s and 1960s. And no goal or aspiration would encompass this heated scientific battle more than the desire to put a human on the Moon.

The Earth and the Moon: Picturing a Perfect Partnership

“Orbiting Earth in the spaceship, I saw how beautiful our planet is. People, let us preserve and increase this beauty, not destroy it!”

Yuri Gagarin, the first human in space (12 April 1961)
A view of the Earth from the Moon taken by NASA’s Lunar Orbiter 1 in 1966 (NASA/ LOIRP).

By 1966 when the image above was captured the space race was in full swing. The USSR had launched both Sputnik 1 & 2 into orbit in October and November 1957 respectively, with the first becoming the original Earth-orbiting satellite and the second carrying a dog named Laika into space.

This would quickly be followed by US satellites Explorer 1 carrying experimental equipment that would lead to the discovery of the Van Allen radiation belt, and the world’s first communications satellite SCORE, both in 1958. In the same year, the National Aeronautics and Space Administration (NASA) would be created to replace the National Advisory Committee on Aeronautics (NACA).

Earth rises above the Moon’s horizon as seen by Apollo 11 (NASA/ JSC)


Most significantly, in 1961 the Soviets would put the first human being into orbit. Cosmonaut Yuri Gagarin made a single orbit around the Earth at a speed of over 27 thousand kilometres per hour during his 108-minute stay in space.

Yet, it wasn’t the Soviets that captured the stunning image above of earth from the vicinity of the Moon’s surface. That honour belongs to the US craft Lunar Orbiter 1 (LU-A). The NASA spacecraft was the first US mission to orbit the Moon, its primary task was to photograph not the Earth but rather potential landing sites on the Moon for the upcoming Apollo missions.

Again, as was the case with Apollo 17’s ‘Blue Marble’, the image of Earth from space taken by Lu-A taken on August 28th 1966 by the onboard Eastman Kodak imaging system was completely unplanned.

In 1969 many of the Apollo missions themselves would capture stunning and evocative images of the Earth rising above the crest of the Moon’s surface–including the above image captured by Apollo 11 and the one below taken by Apollo 8. These ‘Earthrise’ photographs would become a popular expression of Earth’s relative isolation and vulnerability.

NASA’s Lunar Reconnaissance Orbiter (LRO) captured a unique view of Earth from the spacecraft’s vantage point in orbit around the moon on October 12, 2015. (NASA/ Goddard/ Arizona State University).

The Earth From the Surface of an Alien World

“The vast loneliness is awe-inspiring and it makes you realize just what you have back there on Earth.” 

Jim Lovell, Apollo 8 Command Module Pilot, during a live broadcast from the Moon on Christmas Eve 1968.

It’s no great surprise given our advancing exploration of space that our attention has turned to the view of Earth from other alien worlds. Even though we are still capturing amazing images from that vantage point such as the one above taken by NASA’s Lunar Reconnaissance Orbiter mission in 2015, our horizons have also broadened to a view of our homeworld from the surface of more distant worlds.

The first image ever taken of Earth from the surface of a planet beyond the Moon. It was taken by the Mars Exploration Rover Spirit (NASA/JPL/Cornell/Texas A&M)

The first image of earth taken from another planet (above) was captured by the Mars Exploration Rover Spirit on the 63rd Martian day of its mission in 2004. Earth was only visible in the image–comprised from images taken by the now silent robotic rover’s four panoramic cameras–after all the colour filters were removed.

This was followed up in January 2014 by NASA’s Curiosity Rover when it captured its first glimpse of Earth from the surface of Mars.

NASA’s Mars rover Curiosity took this photo of Earth from the surface of Mars on Jan. 31, 2014, 40 minutes after local sunset, using the left-eye camera on its mast. Inset: A zoomed-in view of the Earth and moon in the image. (NASA/JPL-Caltech/MSSS/TAMU)

Whilst Mars Exploration Rover Spirit and the Curiosity Rover images may not be the most visually spectacular in the catalogue built during seven decades of space exploration, it stands as a testament to man’s determination to explore other worlds. a determination that nows carries us beyond the solar system.


This composite image of Earth and its moon, as seen from Mars, combines the best Earth image with the best moon image from four sets of images acquired on Nov. 20, 2016, by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter. (NASA/JPL-Caltech/Univ. of Arizona)

A View on the Future

“You develop an instant global consciousness, a people orientation, an intense dissatisfaction with the state of the world, and a compulsion to do something about it. From out there on the moon, international politics look so petty. You want to grab a politician by the scruff of the neck and drag him a quarter of a million miles out and say, ‘Look at that, you son of a bitch!’ “

Edgar Mitchell, Apollo 14 astronaut and the sixth person to walk on the Moon.
Deep Space Climate Observatory (DSCOVR)

As we continue to expand our view of the Universe studying cosmic bodies further and further from our own solar system, the history of space photography reminds us that it is vital we keep a view on our own planet, too. It’s a testament to our scientific progress that the hardest element about putting together a brief article about images of Earth from space that it involved sifting through thousands of incredible pictures.

Currently, NASA’s fleet of satellites consists of many craft devoted to the observation of Earth from space. Often this observation from a cosmic vantage point has the benefit of providing perspective on the damage we are doing to our world. Not only this but NASA’s continued observation of our world allows us to better understand weather patterns and mitigate potential disasters.

Humanity has never been in a better position to understand our world and its place within the wider Universe. The view of our planet from space has shown us its fragility, vulnerability, and the lengths we must go to preserve this beautiful blue marble.

“It is crystal clear from up here that everything is finite on this little blue marble in a black space, and there is no planet B.”

Alexander Gerst, European Space Agency astronaut, to world leaders live from the ISS, December 17th 2018.

NASA and Russia to work on new Lunar Space Station

It’s time to move on to the next stage in mankind’s space exploration.

Artistic depiction of the station. Credits: NASA.

The Cold War will definitely remain one of the darker pages of mankind’s history, but it brought an unexpected upside: the Space Race. The rivalry between the USSR and the United States sent us to unprecedented heights. First, we sent a man to space. Then, mankind rushed to the Moon, accomplishing what few people thought possible, with what today we see as incredibly simple technology. After the Cold War, we built a research station in orbit — the International Space Station has greatly improved our understanding of space, and science in general. Now, it’s time to take things to the next level and mix the two up and set up a station in the near-Moon orbit. That the US and Russia, the two old rivals, are teaming up to do this, is the cherry on the cake.

Rumors about this started about one week ago when Popular Mechanics reported that the head of Roscosmos State Corporation, Igor Komarov, will announce a new partnership with NASA to build a near-Moon station. Russia’s leader Vladimir Putin also expressed support for such a project.

“We will discuss what we will do on the Moon, near the Moon, and the lunar orbital station,” Komarov was quoted as saying, “It is important how (near-lunar station) will develop, what would be the contribution from each country, and what will be our participation.”

Now, things are official, as Komarov himself has noted, and NASA has confirmed.

“We [Roscosmos and NASA] have agreed to join the project to build a new international Deep Space Gateway station in [the] moon’s orbit,” Roscosmos head Igor Komarov said, as cited by Interfax.

The project is called Deep Space Gateway and is regarded by NASA as a stepping stone towards longer missions, especially to Mars. Basically, NASA wants to use this new outpost to test the systems needed for challenging missions to deep space destinations. The near-Moon environment offers a deep-space environment suitable for such tests, and is also relatively accessible from Earth. This deep space gateway would have a power bus, a small habitat to extend crew time, docking capability, an airlock, and serviced by logistics modules to enable research.

This is not a US-Russia project only. Among others, China, India, Brazil, and South Africa are expected to participate.

“I envision different partners, both international and commercial, contributing to the gateway and using it in a variety of ways with a system that can move to different orbits to enable a variety of missions,” said William Gerstenmaier, associate administrator for Human Exploration and Operations at NASA. “The gateway could move to support robotic or partner missions to the surface of the moon, or to a high lunar orbit to support missions departing from the gateway to other destinations in the solar system.”

Space Race 2.0: Japan wants to put a man on the Moon by 2030

In an unprecedented announcement for the country, Japan announced that they want to put a man on the Moon by 2030.

The Moon seems closer than ever. Image via Wikipedia.

It’s the first time Japan’s space agency (JAXA) has expressed an intention to send a person beyond the International Space Station. The plan was announced at an education ministry panel this week. There are no official blueprints or details about how they will go about doing this. According to the public broadcaster NHK, this will be announced next year.

However, unlike the US, who did all this by itself during the initial Space Race, Japan wants to first join a NASA-led mission in 2025 to build a space station in the moon’s orbit, and then send an astronaut to the Moon from there. Not to take anything from them, but given the expected construction of the Moon space station, the technological challenges would be greatly reduced.

Still, one can only be happy about what seems to be a new space race in Asia. JAXA also announced they want to land a rover on the Moon by 2018, a mission that is expected to cost around $100 million. Two years ago, JAXA also sent an orbiter to Venus, sending fresh images of the planet. This man-on-the-moon announcement comes right after China and India have both announced ambitious plans. In November, China’s Shenzhou-11 spacecraft returned to Earth, bringing home two astronauts from the country’s longest space mission. China has also revealed illustrations of the new Mars Rover they want to send to the Red Planet by 2020.

Meanwhile, India recently became the first country to successfully send a shuttle to Mars’ orbit (and did so extremely cheaply) and launched a record-breaking 104-satellite rocket. It’s exciting to see Asian countries getting more involved in the space race, but the US also isn’t sitting by idle. Instead, NASA has its eyes on new heights: a manned mission to Mars in 2033.

space_exploration

Space research more than pays for itself, but lack of inspiration raises questions

In light of recent NASA budget cuts, a lot of politicians, citizens and, frankly mostly non-science folks, reflect that money should be funneled to other more, immediate goals: education, health, fighting unemployment etc. The rhetoric goes by the familiar terms that there isn’t any reason for man to venture outside the planet, until he at least settles his affairs in his own backyard. This is an example of projecting an individual perspective, however, onto a situation that concerns mankind as a whole – this sort of abstractions have always been difficult to touch by the lay man, who is inadvertently concerned with the well being of his own self, that of his family, all at present day or in the immediate future.

The space race of the past century, turned today in a space collaboration, has not only touched the hearts of millions and has inspired a world ever dominated by technology to actually get involved with science (the number of science students proportionately increased dramatically since the very first space missions, peaking during the Apollo era), but has also proved to be extremely economically sustainable. According to Ashley Dale, of University of Bristol, for every US$1 put into US space agency, its citizens get US$10 as payback; in Japan and the European Union that amount is more than US$3.

Where is this money coming from? Well, from the booming private space industry of course. Thanks to inventions spun out of space era research, today we’re all experiencing the benefits that come with weather forecasting, satellite television and communications, disaster relief, traffic management, agricultural and water management, and global positioning system (GPS). All of these just to name a few.  Besides this, the space industry is what tens of thousands of employees all over the world call home; an industry that falls back into the economy some $300 billion each year.

The average annual expenditure of NASA during the Apollo Era was US$23 billion in today’s money, while NASA’s average spend in the last decade was US$17 billion. While the investments made then brought tremendous advancements in satellite communications and, of course, the infamous Apollo missions that eventually landed twelve astronauts on the moon, recent events at NASA have failed to deliver the same glory. Of course, the technological leap since the Apollo missions in the late ’60s and ’70s has been tremendous. We’ve since seen the completion of the International Space Station and the landing of three rovers on the planet Mars, the last of which, the Curiosity Rover, has already made startling discoveries on Mars: traces of organic matter, better atmospheric readings and geological surveys etc.

It’s just that, people –  the general public – were guided to think that today we should have reached heights that are proportionally equal to the glory of the Apollo heyday – landing a man on Mars for instance, settling colonies on the moon. Personally, I believe there could have been a strong chance for this to happen if the same momentum, funding and spirit from the space race would have continued until present day. It’s enough to take a look at the graph from below to understand how people’s inspiration to seek for stars changes: a dramatic rise during Apollo, and a steady downward curve during the passive, more or less devoid of extremely significant events (for the general public), leading to this day.

space_exploration

How the “Apollo Buzz” affected education in the US.

Alright, so what’s next? Most likely we’ll see a paradigm shift, both in terms of power and scope. While NASA and ESA will still remain powerful players in the space scene for years to come, the Indian and Chinese programs are quick to follow and, if we’re to judge by their rapid industrialization and economic growth, may actually lead the way for man’s next big leaps among the stars. Hollywood is quick to show American astronauts touching base on Mars or maneuvering spacecraft through hyperspace. Movies aside, the astronauts of tomorrow will most likely be of much varied colours and allegiances.

Also, it may be safe to assume that the great impetus to achieve grand missions for mankind will be spearheaded by private corporations, and not by government programs, which in recent years have proven to be slow, rigid and prone to bureaucracy. Some believe it’s possible for humanity to establish a permanent manned base on Mars by 2100; the same people usually believe that such a move would not be about going higher than ever before, a chivalrous adventure for glory – it would be about survival. Reaching Mars by that time means providing humanity with a much needed second planet, one we could terraform (Mars hasa 24.6 hour day, fertile soil, a CO2 rich atmosphere, and an abundance of water). It’s worth remembering that we already use 1.5 Earths…

*update: the initial draft stated twenty-four astronauts landed on the moon; this has been duly corrected to  twelve. 

China could own the Moon, as US loses the space race

Another game of solar system monopoly is being played at the moment, and so far, the United States are losing it, according to commercial space entrepreneur Robert Bigelow.

The first prize, ownership of the Moon, is up for grabs, and while Americans are still basking in the glory they had some 40 years ago, China seems ready, willing and able to snag it. Meanwhile, according to him, NASA is just a shadow of its former self, while in contrast, China has the motivation and ability to win the next space race and claim ownership of much of the moon. In order to back up his claims, he explains that according to the international law, such a thing is possible, especially if they able to enforce it through continuous human lunar presence.

Owning a chunk of the moon would not only give scientific and financial advantages, but the international prestige would be huge! Not only does it offer a possibility to study our planet’s satellite in unprecedented detail, but it is also a starting point to study the rest of the solar system! It also contains some incredibly valuable resources, such as helium-3, a possible fuel for nuclear fusion.

In addition to the technical capacity and the workpower, China also has the money and the lack of national debt to fund such a thing. He predicted that in 2022-2026, they will own large areas of the Moon, which will both scare and motivate the Americans to start looking somewhere else – Mars.

He advocated for putting 10 percent of the money the United States currently spends on the wars in Iraq and Afghanistan toward space exploration with the goal of sending an expedition to Mars, in a truly unprecedented event.

“America would experience a rebirth of vision, excitement, science and global prestige,” Bigelow said.

However, competition with China isn’t the only option. If they were willing to share some of their projects, then everybody should be more than happy with a piece of the pie.

“A piece of something is better than a piece of nothing,” Bigelow said.

[PHOTOS] How NASA imagined in the 1970s space stations would like in the future

In a time when a thing called the space race was in full swing, technological advance and cocky egos made a lot of people, mostly scientists, get disillusioned with visions of grander for the future.  In the 1970’s Princeton physicist Gerard O’Neill with the help of NASA’s Ames Research Center and Stanford University showed that we can build giant orbiting spaceships and live in them. These space stations would have been giant enclosed-circle cylinders that housed at least 10,000 people, giant ecosystems, lakes, farm areas (with tractors plowing the fields inside the space station…), entire towns actually wrapped inside the station.

Considering that in 2011, the International Space Station, which is barely closing on its 25 years completion program and costs tens of billions of dollars, looks like a big tin can compared to the stunning futuristic representations from below, one could think that people were a bit ecstatic concerning the 2000s back then. But that doesn’t really matter, since the image gallery below not only offers some brilliant eye candy to feast upon, but also some intense stimulation for ones senses and spirit. I can only image how the managers of this NASA settlement project and the artists drawing it must have felt when it was finally completed.

Source: NASA via Dvice.