Tag Archives: Reality

Three Old Scientific Concepts Getting a Modern Look

If you have a good look at some of the underlying concepts of modern science, you might notice that some of our current notions are rooted in old scientific thinking, some of which originated in ancient times. Some of today’s scientists have even reconsidered or revamped old scientific concepts. We’ve explored some of them below.

4 Elements of the Ancient Greeks vs 4 Phases of Matter

The ancient Greek philosopher and scholar Empedocles (495-430 BC) came up with the cosmogenic belief that all matter was made up of four principal elements: earth, water, air, and fire. He further speculated that these various elements or substances were able to be separated or reconstituted. According to Empedocles, these actions were a result of two forces. These forces were love, which worked to combine, and hate, which brought about a breaking down of the elements.

What scientists refer to as elements today have few similarities with the elements examined by the Greeks thousands of years ago. However, Empedocles’ proposed quadruplet of substances bares resemblance to what we call the four phases of matter: solid, liquid, gas, and plasma. The phases are the different forms or properties material substances can take.

Water in two states: liquid (including the clouds), and solid (ice). Image via Wikipedia.

Compare Empedocles’ substances to the modern phases of matter. “Earth” would be solid. The dirt on the ground is in a solid phase of matter. Next comes water which is a liquid; water is the most common liquid on Earth. Air, something which surrounds us constantly in our atmosphere, is a gaseous form of matter.

And lastly, we come to fire. Fire has fascinated human beings for time beyond history. Fire is similar to plasma in that both generate electromagnetic radiation such as light. Most flames you see in your everyday life are not hot enough to be considered plasma. They are typically considered gaseous. A prime example of an area where plasma is formed is the sun. The ancient four elements have an intriguing correspondent in modern science.

Ancient Concept of Dome Sky vs. Simulation Hypothesis

Millennia ago, people held the notion that his world was flat. Picture a horizontal cooking sheet with a transparent glass bowl set on top of it. Primitive people thought of the Earth in much the same way. They considered the land itself as flat and the sky as a dome. However, early Greek philosophers such as Pythagoras (c. 570-495 BC) — who is also known for formulating the Pythagorean theorem — understood that Earth was actually spherical.

Fast forward to the 21st century. Now scientists are considering the scientific concept of the dome once again but in a much more complex manner.

Regardless of what conspiracy lovers would have you believe, the human race has ventured into outer space, leaving the face of the Earth to travel to the stars. In the face of all our achievements, some scientists actually question if reality is real, a mindboggling and apparently laughable idea.

But some scientists have wondered if we could be existing in a computer simulation. The gap between science and science fiction starts to become very fine when considering this.

This idea calls to mind classic sci-fi plots such as those frequently played out in The Twilight Zone in which everything the characters take as real turns out to be something entirely unexpected. You might also remember the sequence in Men in Black in which the audience sees that the entire universe is inside an alien marble. Bill Nye even uses the dome as an example in discussing hypothetical virtual reality. This gives one the feeling that he is living in a snowglobe.

Medieval Alchemy vs. Modern Chemistry

The alchemists of the Middle Ages attempted to prove that matter could be transformed from one object into an entirely new object. One of their fondest goals they wished to achieve was the creation of gold from a less valuable substance. They were dreaming big, but such dreams have not yet come to fruition. Could it actually be possible to alter one type of matter into another?

Well, modern chemists may be well on their way to achieving this feat some day. They are pursuing the idea of converting light into matter, as is expressed in Albert Einstein’s famous equation. Since 2014, scientists have been claiming that such an operation would be quite feasible, especially with extant technology.

Einstein’s famous equation.

Light is made up of photons, and a contraption capable of performing the conversion has been dubbed “photon-photon collider.” Though we might not be able to transform matter into other matter in the near future, it looks like the light-to-matter transformation has a bright outlook.

Life with VR: a short adaptation guide

With the recent releases of Oculus Rift and HTC Vive, soon to be joined by Microsoft’s HoloLens, virtual reality has finally become accessible to consumers. As far as innovations go, it stands in a class of its own by allowing us to virtually alter the real world around us. It carries an echo of the changes mass media and computers brought into our lives, but there hasn’t been anything quite like it in our history. Among other things, VR could have a very powerful impact on our home life.

Microsoft HoloLens blends reality with virtual objects.
Image via wikimedia user Microsoft Sweden.

First, it’s easy to forget that incorporating virtual objects or people into your house still requires physical space. You need enough space to whack goblins or whatever your VR game of choice is. Reports are already coming in of people injuring their hands playing Selfie Tennis when they swing for a virtual ball but hit a very real ceiling. For applications that blend the real with the virtual — such as the HoloLens — you need to make enough room for projections.

“Let’s assume that you don’t have a giant empty room in your house just waiting to become your own personal holodeck,” Wes Fenlon recently wrote for PC Gamer magazine. “Because if you do, you’re already in good shape for VR. Also, we’re very jealous and would like to come hang out, please.”

As most VR applications require you to stand, Fenlon also suggest switching to a standing desk in your office and opting for anti-fatigue mats instead of carpeting, to make the hours you’ll be spending on your feet more comfortable. But incorporating virtual reality into our lives goes deeper than making space or buying new furniture.

Our home is usually reserved as a place of privacy, and here we surround ourselves both with functional objects and those that have meaning to us — books, art or emotionally charged trinkets. But the necessities of VR could instead push interior design towards minimalism – an empty space to make room for a make-believe world. As Fenlon jokingly points out, the virtual reality boom is a perfect excuse for decluttering – getting rid of furniture, removing rugs and cables you might trip on, and even taking pictures down from your walls so you don’t knock them off.

It’s also possible that the building itself doesn’t fit your VR and you’ll inadvertently do a face high-five with the floor when playing a game — either way, you won’t always be able to visually keep track of your environment, something you’ll have to constantly remind yourself in VR.

It’s not only our concrete surroundings that we’ll have to watch our for, though: in the guidelines accompanying its Rift headset, Oculus warns users to “remember that the objects you see in the virtual environment do not exist in the real environment, so don’t sit or stand on them or use them for support.” This just goes to show how easily we can lose track of what is and isn’t real around us.

I’m not saying that VR is the doom of our species or our crowning achievement. Up to now, we’ve either acted in the real world or a virtual one with a clear distinction between them. But that line just got very blurry and it’s definitely something that we’ve never been exposed to before — definitely not on a scale that we’re likely to see soon. As such, it’s going to take a bit of getting used to.

And don’t throw away all your stuff just yet. You never know when the power might go out.

 

Consciousness comes in “slices” roughly 400 milliseconds long

A new model proposed by EPFL scientists tries to explain how our brain processes information and then makes us consciously aware of it. According to their findings, consciousness forms as a series of short bursts of up to 400 milliseconds, with gaps of background, unconscious information processing in between.

Image via pixabay user johnhain

Subjectively, consciousness seems to be an uninterrupted state of thought and senses giving us a smooth image of the world around us. So to the best of our knowledge, sensory information is continuously recorded and fed into our perception; we then process it and become aware of it as this happens. We can clearly see the movement of objects, we hear sounds from start to end without pause, etc.

But have you ever found yourself reacting to something before actually becoming aware of the need to react? Let’s say you’re running and trip over, but you change your motions to prevent falling almost automatically. Or you’re in traffic, the car in front of you suddenly stops and you slam on the brakes instinctively, even before you realize the danger. If yes, you’ve most likely said “thanks reflexes” and left it like that.

This, however,  hints at processes that analyze data and elaborate responses without our conscious input, sparking a debate in the science community that goes back several centuries. Why does this automated response form — just as an extra safety measure? Or rather, because your consciousness isn’t always available when push comes to shove? In other words, is consciousness constant and uninterrupted, or more akin to a movie reel — a series of still shots?

Michael Herzog at EPFL and Frank Scharnowski at the University of Zurich now put forward a new model of how the brain processes unconscious information, suggesting that consciousness arises only in intervals up to 400 milliseconds, with no consciousness in between. By reviewing data from previously published psychological and behavioral experiments on the nature of consciousness — such as showing a participant several images in rapid succession and asking them to distinguish between them while monitoring their brain activity — they have developed a new conceptual framework of how it functions.

They propose a two-stage processing of information. During the first, unconscious stage, our brain processes specific features of objects such as color or shape. It then analyzes these objects with a very high time-resolution. But crucially to the proposed model, there is no actual perception of time during this phase — even time-dependent features such as duration or changes in color are not perceived as such. Time simply becomes a value assigned to each state, just as color or shape. In essence, during this stage your brain gathers and processes data, then puts them into a spreadsheet (a brainxcell if you will,) and “time” becomes just another value in a column.

Then comes the conscious stage: after unconscious processing is completed the brain renders all the features into our conscious thought. This produces the final picture, making us aware of the stimulus. Processing a stimulus to conscious perception can take up to 400 milliseconds, a considerable delay from a physiological point of view. The team focused their study on visual perception alone, and the delay might vary between the senses.

“The reason is that the brain wants to give you the best, clearest information it can, and this demands a substantial amount of time,” explains Michael Herzog. “There is no advantage in making you aware of its unconscious processing, because that would be immensely confusing.”

This is the first time a two-stage model has been proposed for how consciousness arises, and it may offer a more refined picture than the purely continuous or discrete models. It also provides useful insight into the way our brain processes time and relates it to our perception of the world.

The full paper, titled “Time Slices: What Is the Duration of a Percept?” has been published online in the journal PLOS Biology and can be read here.