Tag Archives: parker solar probe

Parker Solar Probe becomes the first ship to “touch” the Sun

The corona of the sun is two million degrees Fahrenheit (give or take). While exploring it was mostly regarded as a science fiction project, on April 28, NASA was able to put a spacecraft inside the flaming inferno. Using materials such as tungsten, niobium, molybdenum and sapphire, the Parker Solar Probe spent five hours in the sun’s extended solar atmosphere, marking a big leap for solar science.

“This marks the achievement of the primary objective of the Parker mission and a new era for understanding the physics of the corona,” said Justin C. Kasper, coauthor of the study which was recently published in Physical Review Letters. “The concept of sending spacecraft into the magnetized atmosphere of the sun—sufficiently close that the magnetic energy is greater than both ion and electron kinetic and thermal energy—predated NASA itself.”

No craft has ever reached this close to the Sun. (Image: NASA)

The corona is the outermost layer of the Sun’s atmosphere where strong magnetic fields bind plasma and prevent turbulent solar winds from escaping. When solar winds top a speed fast enough to break free from the corona and the Sun’s magnetic fields, they have reached the so-called Alfvén point — the boundary where the point where the magnetic and kinetic energy of the plasma are equal. Many scientists believe that zig-zags in the sun’s magnetic field, called switchbacks, emerge from this area.

Previously, how and where they formed was a mystery. Prior to April 28, when the Parker Probe entered the corona three times, the spacecraft had been flying just beyond this point.

“If you look at close-up pictures of the Sun, sometimes you’ll see these bright loops or hairs that seem to break free from the Sun but then reconnect with it,” said Michael Stevens, an astrophysicist at the Center for Astrophysics | Harvard & Smithsonian. “That’s the region we’ve flown into — an area where the plasm, atmosphere and wind are magnetically stuck and interacting with the Sun…We know that the energy comes from the churning magnetic fields bubbling up through the surface of the sun, but we do not know how the Sun’s atmosphere absorbs this energy.”

Surprisingly, the researchers noticed that the Alfvén critical surface is not smooth, but wrinkled. The data suggest that the largest and most distant wrinkle of the surface was produced by a pseudostreamer—a large magnetic structure more than 40 degrees across, and found back on the innermost visible face of the sun. It is not presently understood why a pseudostreamer would shove the Alfvén critical surface away from the sun.

Researchers observed far fewer switchbacks below the Alfvén critical surface than above it. The discovery could mean that switchbacks do not form within the corona. Alternatively, low rates of magnetic reconnection on the Sun’s surface could have pumped less mass into the detected wind stream, resulting in a smaller number of switchbacks.

Interestingly, the spacecraft also found some unknown physics that could be affecting the Sun’s heating and dissipation.

“We have been observing the Sun and its corona for decades, and we know there is interesting physics going on there to heat and accelerate the solar wind plasma,” said Nour E. Raouafi, the Parker Solar Probe Project Scientist at Johns Hopkins University Applied Physics Laboratory. “Still, we cannot tell precisely what that physics is. With Parker Solar Probe now flying into the magnetically-dominated corona, we will get the long-awaited insights into the inner workings of this mysterious region.”

The Parker Probe was launched in 2018 with the goal of reaching humanity’s first star. This was its eighth interaction with the Sun. Other data gleaned from the probe include discoveries including explosions that create space weather and the dangers of super-speedy dust. In addition to the data inside the corona, thanks to solar winds, the probe will also be the fastest craft ever created, zipping along at 430,000 mph (690,000 kph) by 2025. That’s 0.064% the speed of light.

“It is hard to overstate the significance of both the event and the observations made by Parker Solar Probe,” said Gary Zank, a coinvestigator on the probe’s Solar Wind Electrons Alphas and Protons instrument. “For over 50 years, since the dawn of the space age, the heliospheric community has grappled with the unanswered problem of how the solar corona is heated to well over a million degrees to drive the solar wind. The first measurements of the sub-Alfvénic solar wind may represent the most major step forward in understanding the physics behind the acceleration of the solar wind.”

NASA’s Parker Solar Probe Could Help Solve One of the Mysteries of Our Sun

Artist rendering of NASA's Parker Solar Probe observing the sun. Credit: NASA/Wikimedia Commons.

Artist rendering of NASA’s Parker Solar Probe observing the sun. Credit: NASA/Wikimedia Commons.

One of the most logically-baffling solar mysteries is the fact that the sun’s surface is close to 10,000 degrees Fahrenheit while its outer atmosphere is several million degrees hotter. The body of the heat’s source itself is cooler than the atmosphere surrounding the fireball — and that’s simply against the common sense of physics.

Some physicists think that the terrific, intense heat displayed in the outer limits of the sun’s atmosphere may be explained by magnetic waves traveling to and from the solar surface, bouncing off the upper atmosphere (otherwise known as the corona) of the star. Recent studies have suggested that this activity could be tied to the sun’s zone of preferential ion heating. In this zone, ions reach scorching temperatures exceeding those at the very core of the sun.

Another element which has a role to play in this outlying solar vortex are Alfven waves. These waves are low-frequency oscillations traveling through a plasma in a magnetic field. Scientists think that these waves are making solar wind particles to collide and ricochet off one another. But once it hits the outskirts of the zone of preferential heating, the solar wind sweeps by at an extremely fast pace. Thus, it manages to evade the Alfven waves from there on out.

Researchers at trying to definitively mark the extent to which the superheating effect reaches beyond the sun. Recent research has brought light to a connection between the Alfven point (the point of altitude beyond the solar surface that permits solar wind particles to break free of the sun) and the outskirts of the zone of preferential heating. These two fields have fluctuated in unison. They shall continue their dance, and in 2021, NASA’s Parker Solar Probe, christened in honor of physicist Eugene Parker, should come in contact with the two boundaries.

The spacecraft includes instruments capable of recording a number of significant data pertaining to those solar fields. The information it would collect in some two years to come would be invaluable in this particular study.

The Parker Solar Probe was launched in August 2018. It made its second successful fly-by of our sun in early April with the follow-up perihelion (the point at which it gets closest to the sun) scheduled to occur on September 1. Visit NASA’s page on the Parker Solar Probe to learn more about it and its mission. To learn of interesting updates, check out the website of Parker Solar Probe Science Gateway.

Illustration of NASA"s Parker Solar Probe. Credit: NASA.

Parker solar probe comes closer to the sun than any other man-made spacecraft

NASA’s Parker Solar Probe has beaten a decades-old record for making the closet approach to the sun by of any man-made spacecraft.

Illustration of NASA"s Parker Solar Probe. Credit: NASA.

Illustration of NASA”s Parker Solar Probe. Credit: NASA.

The previous record for the closest solar approach was set by the German-American Helios 2 spacecraft in April 1976. On 29 October 2018, at exactly 1:04 pm EDT (17:04 GMT), Parker moved closer than 42.73 million kilometers (26.55 million miles) from the Sun’s surface.

Parker is set to break other records soon, such as the top heliocentric and geocentric speeds. In 1976, the same Helios 2 set the record for heliocentric speed (relative to the sun) at 246,960 kilometers per hour (153,454 miles per hour). Parker is expected to beat this record on 29 October at about 10:54 pm EDT.

What’s more, the probe — tasked with studying the inner workings of the sun — is expected to reach a staggering top speed of 692,017 km/h (430,000 mph) during its final pass around the sun, shattering any previous record for geocentric speed (relative to Earth). It won’t be until 2025 until this happens, however.

“Parker Solar Probe has been one of our most challenging missions to date,” said Omar Baez, Nasa’a launch director, when the probe first launched in August 2018. “I’m very proud of the team that worked to make this happen. We at Nasa and the Launch Services Program are thrilled to be part of this mission.”

The influence of solar activity on Earth and other worlds is known as space weather, but there are many mysterious aspects of it that are still unknown to scientists. This is what Parker is for.

For its mission, Parker carries a range of instruments that can study the sun both remotely and in situ (directly) — the kind of observations that might unravel some of the sun’s most well-kept secrets.

Of course, NASA has several specific questions it wants Parker to answer. One of them has to do with the mystery of the acceleration of solar wind — the constant ejection of magnetized material from the sun. Somewhere, somehow, this solar wind is accelerated to supersonic speeds.

Parker will fly straight through the corona — the sun’s atmosphere that extends millions of kilometers into outer space. The corona is scorching hot, reaching temperatures in the range of millions of degrees Celsius. However, the sun’s surface has a temperature of only about 6,000 degrees Celsius. This makes no sense at first glance: how is it possible that the surface of the sun is so cold compared to its atmosphere? Well, scientists hope that Parker might come up with an answer to this counter-intuitive conundrum.

During its closest flyby, slated for June 2025, Parker will be only 6.1 million kilometers (3.8 million miles) from the sun’s surface, where temperatures can reach millions of degrees Celsius. Meanwhile, Parker will complete 24 perihelions, looping between Venus and the Sun.

Credit: NASA.

Fastest human spacecraft launches for the sun’s corona

Credit: NASA.

Credit: NASA.

On August 11, NASA will launch a super-fast space probe that will travel through the sun’s atmosphere. Thanks to sophisticated instruments and state-of-the-art thermal shielding, the spacecraft will be able to go where no other human-made machinery has gone before. Its mission is to answer some of the most pressing mysteries about the sun and stars in general.

The Parker Solar Probe will launch tomorrow, with a launch window starting at 3:33 a.m. EDT, aboard a United Launch Alliance Delta IV Heavy rocket that will light the sky above Cape Canaveral, Florida. The light-weight probe — no bigger than a compact vehicle — should become the fastest human spacecraft ever, a record currently held by the New Horizons probe launched in 2006. NASA estimates that the probe will reach a top speed of 692,000 kilometers per hour (430,000 miles per hour).

UPDATE: The US space agency was forced to delay its launch from Cape Canaveral, Florida, on Saturday following last-minute investigations. It eventually lifted off at 3.31 am eastern time (8.31 am BST) on Sunday morning.

“Parker Solar Probe has been one of our most challenging missions to date,” said Omar Baez, Nasa’a launch director. “I’m very proud of the team that worked to make this happen. We at Nasa and the Launch Services Program are thrilled to be part of this mission.”

This breakneck speed won’t last long though, as NASA plans to slow Parker down so it can safely enter the sun’s orbit. Engineers plan to lower the probe’s velocity by making a gravity slingshot around Venus, which Parker will circle seven times, with each pass bringing it closer to the surface of the sun. Gravity slingshots are typically used to accelerate spacecraft by catching orbital momentum from the planet. However, the reverse process (approaching the planet in the opposite direction that it’s orbiting the Sun) will be used to slow down the craft.

During its closest approach to the sun, Parker will stand just 3.8 million miles away from the sun’s surface, where it will be exposed to temperatures of millions of degrees Celsius and 475-times the solar power an Earth-orbiting satellite experiences.

“We’ve been studying the Sun for decades, and now we’re finally going to go where the action is,” said Alex Young, associate director for science in the Heliophysics Science Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

The sun’s mysteries and a brave modern-day Icarus

Credit: NASA/Johns Hopkins APL/Steve Gribben.

Credit: NASA/Johns Hopkins APL/Steve Gribben.

There’s a lot of things we don’t know about the hot ball of glowing plasma at the heart of our solar system. For one, the sun is dynamic, constantly belching magnetized material outward even as far as beyond Pluto’s orbit. The intensity and frequency of these ejections wax and wane according to a nearly periodical 11-year solar cycle. For instance, at the peak of the cycle, our star grows more sunspots and spews more solar flares, which can damage satellites in Earth’s orbit and even our electrical grids.

The influence of solar activity on Earth and other worlds is known as space weather. Now, scientists are looking to understand the sun and its weather activity by sending a probe to its surface, just like weather satellites in orbit that track Earth.

This mission has been in the making for the last 60 years, ever since physicist Eugene Parker published a groundbreaking scientific paper in 1958 theorizing the existence of the solar wind.

“The Sun’s energy is always flowing past our world,” said Nicky Fox, Parker Solar Probe’s project scientist at the Johns Hopkins University Applied Physics Lab. “And even though the solar wind is invisible, we can see it encircling the poles as the aurora, which are beautiful – but reveal the enormous amount of energy and particles that cascade into our atmosphere. We don’t have a strong understanding of the mechanisms that drive that wind toward us, and that’s what we’re heading out to discover.”

For its mission, Parker carries a range of instruments that can study the sun both remotely and in situ (directly) — the kind of observations that might unravel some of the sun’s most well-kept secrets.

Of course, NASA has several specific questions it wants Parker to investigate. One of them has to do with the mystery of the acceleration of solar wind — the constant ejection of magnetized material from the sun. Somewhere, somehow, this solar wind is accelerated to supersonic speeds.

Parker will fly straight through the corona — the sun’s atmosphere that extends millions of kilometers into outer space. The corona is scorching hot, reaching temperatures in the range of millions of degrees Celsius. However, the sun’s surface has a temperature of only about 6,000 degrees Celsius. This makes no sense at first glance: how is it possible that the surface of the sun is so cold compared to its atmosphere? Well, scientists hope that Parker might come up with an answer to this counter-intuitive conundrum.

To answer these questions and more, Parker will rely on instruments such as the FIELDS suite which will capture the scale and shape of electric and magnetic fields in the Sun’s atmosphere. Of course, there will also be an imaging instrument — because how could a probe fly this close to the sun and not take awesome pictures? Called WISPR, short for Wide-Field Imager for Parker Solar Probe, the instrument is mainly designed to image coronal mass ejections (CMEs), jets and other solar ejecta.

The SWEAP suite of instruments, short for Solar Wind Electrons Alphas and Protons Investigation, will count the most abundant particles in the solar wind — electrons, protons, and helium ions — and measure such properties as velocity, density, and temperature to improve our understanding of the solar wind and coronal plasma. Finally,  ISʘIS suite – short for Integrated Science Investigation of the Sun, and including ‘ʘ’, the symbol for the Sun, in its acronym – measures particles across a wide range of energies in order to understand their life cycles — that is, where they came from, how they became accelerated, and how they move out from the Sun through interplanetary space.

The science that will enable Parker to survive the sun’s corona

At its nearest perihelion (closest orbit point to the sun), the probe will come seven times closer than any spacecraft before. Credit: NASA.

At its nearest perihelion (closest orbit point to the sun), the probe will come seven times closer than any spacecraft before. Credit: NASA.

But how will Parker keep its ‘wings’ from melting? During its closest flyby, Parker will be only 6.1 million kilometers (3.8 million miles) from the sun’s surface, where temperatures can reach millions of degrees Celsius. But there’s a catch — just because the corona is that hot, it doesn’t mean that the probe will ‘feel’ that temperature due to the phenomenon of heat transfer. Simply put, some mediums conduct heat (energy) better than others.

For instance, if you stand on a tile floor you’ll feel cold but if you stand on a carpet your feet feel comfortably warm. However, both kinds of surfaces have the same temperature because they’ve had time to reach a thermal equilibrium — it’s just that the tile floor is a good heat conductor, which will make your feet seem cold as heat passes from your feet into the tile. The carpet is a poor heat conductor and it would take ages for your feet to match its lower temperature.

Bearing this in mind, we can now understand how Parker won’t get obliterated — even though the corona has a very high temperature, the sun’s outer atmosphere has a very low density and, hence, is a poor heat conductor. According to NASA, Parker’s sun-facing side will be heated to only about 1,644 degrees Kelvin (1,370 C° or 2,500 F°).

That’s still a lot, to be fair, which is why the Parker Solar Probe is equipped with a cutting-edge heat shield called the thermal protection system, or TPS. It’s a sandwich of carbon-carbon composite surrounding nearly 4.5 inches of carbon foam, which is about 97% air. Thanks to its lightweight materials, the TPS only weighs 72.5 kilograms (160 pounds) despite being nearly 2.4 meters (8 feet) in diameter. Anything behind the shield shouldn’t heat to more than 300 Kelvin (30 C° or 85 F°)! A cooling system that runs on pressurized deionized water will keep temperatures at manageable levels in the parts fully exposed to the sun.

The key is for the shield to be always facing the sun, but sometimes the probe will have to operate for long periods of time without being able to communicate with Earth. To solve this predicament, NASA engineers have designed a fault management system that self-corrects the probe’s course and direction facing the sun to ensure that the scientific instruments stay cool and functioning.

If for some reason Parker doesn’t launch by 23 August, it will have to wait until May 2019 for the next launch opportunity, when Earth and Venus will again be lined up correctly. Let’s keep our fingers crossed for a safe journey to the sun!

Illustration of the Parker Solar Probe. Credit: NASA.

NASA will soon launch a probe that will travel through the sun’s atmosphere — here’s what you need to know

Illustration of the Parker Solar Probe. Credit: NASA.

Illustration of the Parker Solar Probe. Credit: NASA.

According to Greek mythos, Daedalus was an unrivaled Athenian craftsman — the Leonardo da Vinci of his day. To his great misfortune, he angered King Minos, the ruler of the island of Crete. Desperate to flee the island, Daedalus built two pairs of wings for himself and his son Icarus, which he fixed with wax. Icarus is warned, however, that he shouldn’t fly too high lest the sun melt the wax that holds his wings. Icarus heeded his father’s advice — but only for a bit before he got cocky. Daedalus’ son flew too high and, sure enough, his wings melted, plunging the boy into the sea where he drowned.

Fast forward to present reality and the Daedaluses of our time — NASA scientists, who are gearing up for one of the most anticipated and exciting launches of the year, that of a probe destined to ‘touch’ the sun. But unlike Icarus’ flimsy, wax-coated wings, NASA’s probe is more than well equipped to brave the sun’s corona, where temperatures can reach millions of degrees Celsius.

The Parker Solar Probe ought to launch no earlier than August 6, 2018, aboard a United Launch Alliance Delta IV Heavy that will light the sky above Cape Canaveral, Florida. Today, the mission’s scientists held a press conference detailing the probe’s science goals and the technology behind it.

“We’ve been studying the Sun for decades, and now we’re finally going to go where the action is,” said Alex Young, associate director for science in the Heliophysics Science Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

There’s a lot of things we don’t know about the hot ball of glowing gases at the heart of our solar system. For one, the sun is dynamic, constantly belching magnetized material outward even as far as beyond Pluto’s orbit. The intensity and frequency of these ejections wax and wane according to a nearly periodical 11-year solar cycle. For instance, at the peak of the cycle, our star grows more sunspots and spews more solar flares, which can damage satellites in Earth’s orbit and even our electricity grids.

The influence of solar activity on Earth and other worlds is known as space weather. Now, scientists are looking to understand the sun and its weather activity by sending a probe in its midst, just like weather satellites in orbit that track Earth.

This mission has been in the making for the last 60 years, ever since physicist Eugene Parker published a groundbreaking scientific paper in 1958 theorizing the existence of the solar wind.

“The Sun’s energy is always flowing past our world,” said Nicky Fox, Parker Solar Probe’s project scientist at the Johns Hopkins University Applied Physics Lab. “And even though the solar wind is invisible, we can see it encircling the poles as the aurora, which are beautiful – but reveal the enormous amount of energy and particles that cascade into our atmosphere. We don’t have a strong understanding of the mechanisms that drive that wind toward us, and that’s what we’re heading out to discover.”

To undergo its mission, Parker carries a range of instruments that can study the sun both remotely and in situ (directly) — the kind of observations that might unravel some of the sun’s most well-kept secrets.

Of course, NASA has several specific questions it wants Parker to investigate. One of them has to do with the mystery of the acceleration of solar wind — the constant ejection of magnetized material from the sun. Somewhere, somehow this solar wind is accelerated to supersonic speeds.

Parker will fly straight through the corona — the sun’s atmosphere that extends millions of kilometers into outer space. The corona is scorching hot, reaching temperatures in the range of millions of degrees Celsius. However, the sun’s surface has a temperature of only about 6,000 degrees Celsius. This makes no sense at first glance: how is it possible that the surface of the sun is much less hot than its atmosphere? Well, scientists hope that Parker might come up with an answer to this counter-intuitive conundrum.

To answer these questions and more, Parker will rely on instruments such as the FIELDS suite which will capture the scale and shape of electric and magnetic fields in the Sun’s atmosphere. Of course, there will also be an imaging instrument — because how could a probe fly this close to the sun and not take awesome pictures. Called WISPR, short for Wide-Field Imager for Parker Solar Probe, the instrument is mainly designed to image coronal mass ejections (CMEs), jets and other solar ejecta. The SWEAP suite of instruments, short for Solar Wind Electrons Alphas and Protons Investigation, will count the most abundant particles in the solar wind — electrons, protons and helium ions — and measure such properties as velocity, density, and temperature to improve our understanding of the solar wind and coronal plasma. Finally,  ISʘIS suite – short for Integrated Science Investigation of the Sun, and including ʘ, the symbol for the Sun, in its acronym – measures particles across a wide range of energies in order to understand their life cycles — that is, where they came from, how they became accelerated and how they move out from the Sun through interplanetary space.

But how will Parker keep its ‘wings’ from melting? During its closest flyby, Parker will be only 6.1 million kilometers (3.8 million miles) from the sun’s surface, where temperatures can reach millions of degrees Celsius. But there’s a catch — just because the corona is that hot, that doesn’t mean that the probe will ‘feel’ that temperature due to the phenomenon of heat transfer. Simply put, some mediums conduct heat (energy) better than others.

For instance, if you stand on a bathroom’s tile floor you’ll feel cold but if you stand on a carpet your feet feel comfortably warm. However, both kinds of surfaces have the same temperature because they’ve had time to reach a thermal equilibrium — it’s just that the tile floor is a good heat conductor, which will make your feet seem cold because your body’s surface usually has a higher temperature than the ambient, whereas the carpet is a poor heat conductor and it would take you ages for your feet to match its lower temperature.

Bearing these physics in mind, we can now understand how Parker won’t get obliterated — even though the corona has a huge temperature, the sun’s outer atmosphere has a very low density and, hence, is a poor heat conductor. According to NASA, Parker’s sun-facing side will be heated to only about 1,644 degrees Kelvin (1,370 C° or 2,500 F°).

That’s still a lot, to be fair, which is why the Parker Solar Probe is equipped with a cutting-edge heat shield called the thermal protection system, or TPS. It’s a sandwich of carbon-carbon composite surrounding nearly 4.5 inches of carbon foam, which is about 97% air. Thanks to its lightweight materials, the TPS only weighs 72.5 kilograms (160 pounds) despite being nearly 2.4 meters (8 feet) in diameter. Strikingly, anything behind the shield shouldn’t heat to more than 300 Kelvin (30 C° or 85 F°)! A cooling system that runs on pressurized deionized water keep temperatures at manageable levels in the parts with Parker will be fully exposed to the sun.

The key is for the shield to be always facing the sun, but sometimes the probe will have to operate for long periods of time without being able to communicate with Earth. To solve this predicament, NASA engineers have designed a fault management system that self-corrects the probe’s course and direction facing the sun to ensure that the scientific instruments stay cool and functioning.

All in all, the Parker Solar Probe is a one-of-a-kind space mission that may not only unravel the sun’s mysteries but also those of the myriad of other stars that astronomers are eyeing.

“By studying our star, we can learn not only more about the Sun,” said Thomas Zurbuchen, the associate administrator for the Science Mission Directorate at NASA HQ. “We can also learn more about all the other stars throughout the galaxy, the universe and even life’s beginnings.”