Tag Archives: moon landing

Space and Physics Developments to Look Forward to in 2021

Unfortunately, science journalists don’t generally carry crystal balls as part of their arsenal, and if 2020 taught us anything, it’s not always safe to predict what the forthcoming year will bring. With that said, there are some space and physics developments that we can be fairly certain that will come to pass in 2021.

These are ZME Science’s tips for the top space science and physics events scheduled to occur in 2021.

Back to the Beginning with the James Webb Launch

It’s almost impossible to talk about the future of astronomy without mentioning NASA’s forthcoming James Webb Space Telescope (JWST). To call the launch of Webb ‘much-anticipated’ is a vast understanding.

The fully assembled James Webb Space Telescope with its sunshield and unitized pallet structures that will fold up around the telescope for launch (NASA)

The reason astronomers are getting so excited about the JWST is its ability to see further into the Universe, and thus further back in its history than any telescope ever yet devised. This will allow astronomers to observe the violent and tumultuous conditions in the infant Universe. Thus, it stands poised to vastly improve our knowledge of the cosmos and its evolution.

Part of the reason for JWST’s impressive observational power lies in its incredible sensitivity to infrared light–with longer wavelengths than light visible with the human eye.

The ability to observe the early Universe could help settle confusion about what point in its history galaxies began to form. Whilst the current consensus is that galaxies began to form in later epochs, a wealth of recent research has suggested that galaxies could have formed much earlier than previously believed.

“Galaxies, we think, begin building up in the first billion years after the big bang, and sort of reach adolescence at 1 to 2 billion years. We’re trying to investigate those early periods,” explains Daniel Eisenstein, a professor of astronomy at Harvard University and part of the JWST Advanced Deep Extragalactic Survey (JADES). “We must do this with an infrared-optimized telescope because the expansion of the universe causes light to increase in wavelength as it traverses the vast distance to reach us.”

An artist’s impression of the JWST in place after its 2021 launch (ESA)

The reason infrared is so important to observe the early Universe is that even though the stars are emitting light primarily in optical and ultraviolet wavelengths, travelling these incredible distances means light is shifted into the infrared.

“Only Webb can get to the depth and sensitivity that’s needed to study these early galaxies.”

Daniel Eisenstein, Havard University

After years of setbacks and delays and an estimated cost of $8.8 billion the JWST is set to launch from French Guiana, South America, on 31st October 2021.

JET Will Have Star Power

The race is on to achieve fusion power as a practical energy source here on Earth. Nuclear fusion is already the process that powers the stars, but scientists are looking to make it an energy source much closer to home.

Internal view of the JET tokamak superimposed with an image of a plasma ( EFDA-JET)

When it comes to bringing star power down to Earth the Joint European Torus (JET)–the world’s largest tokamak–leads the way, housing plasmas hotter than are found anywhere else in the solar system, barring the Sun.

A tokamak is a device that uses a powerful magnetic field to trap plasma, confining it in a doughnut-like shape. Containing and controlling these plasmas is the key to generating energy through the fusion process. Within the plasma, particles collide with enough energy to fuse together forming new elements and releasing energy.

The process is cleaner and more efficient than fission power, which rips the atoms of elements apart, liberating energy whilst leaving behind radioactive waste.

JET itself isn’t a power station, rather it was designed to conduct experiments with plasma containment and study fusion in conditions that approach that which will be found in working fusion power plants. So, whilst the International Thermonuclear Experimental Reactor (ITER)–set to be the world’s largest tokamak–is still under construction and won’t be operational until at least 2025, this year is set to be an important year for the experiment that inspired it.

Following upgrades conducted during 2020, JET is scheduled to begin experiments with a potent mix of the hydrogen isotopes deuterium and tritium (D-T). This fuel hasn’t been used since 1997 due to the difficulties presented by the handling of tritium– a rare and radioactive isotope of hydrogen with a nucleus of one proton and two neutrons.

The JET team will be looking to attain an output similar to the 16 megawatts of power that was achieved in ’97, but for a more sustained period and with less energy input. The initial test at the end of the 20th century consumed more power than it produced.

Back to the Moon in 2021

2021 will mark the 52nd anniversary of NASA’s historic moon landing and will see the launch of several missions back to Earth’s natural satellite as well as continuing efforts to send humans following in the footsteps of Armstrong and the crew of Apollo 11.

Illustration of Orion performing a trans-lunar injection burn (NASA)

As part of NASA’s deep space exploration system, Artemis I is the first in a series of increasingly complex missions designed to enable human exploration of the Moon and beyond.

“This is a mission that truly will do what hasn’t been done and learn what isn’t known. It will blaze a trail that people will follow on the next Orion flight, pushing the edges of the envelope to prepare for that mission.” 

Mike Sarafin, the Artemis I mission manager.

Artemis I will begin its journey aboard the Orion spacecraft, which at the time of its launch in November will be the most powerful spacecraft ever launched by humanity producing a staggering 8.8 million pounds of thrust during liftoff. After leaving Earth’s orbit with the aid of solar arrays and the Interim Cryogenic Propulsion Stage (ICPS) Orion will head out to the moon deploying a number of small satellites, known as CubeSats.

After a three week journey to and from the moon and six weeks in orbit around the satellite, Orion will return home in 2022, thus completing a total journey of approximately 1.3 million miles.

The Chandrayaan 2 launch. The ISRO will be hoping for better luck with Chandrayaan 3 in 2021 (ISRO)

NASA isn’t the only space agency with its sights set on the moon in 2021. The Indian Space Research Organisation (ISRO) will launch the Chandrayaan-3 lunar lander at some point in 2021. It will mark the third lunar exploration mission by ISRO following the Chandrayaan-2’s failure to make a soft landing on the lunar surface due to a communications snafu.

Chandrayaan-3 will be a repeat of this mission including a lander and rover module, but lacking an orbiter. Instead, it will rely on its predecessor’s orbiter which is still in good working despite its parent module’s unfortunate crash lander. Should Chandrayaan-3 succeed it will make India’s ISRO only the fourth space agency in history to pull off a soft-landing on the lunar surface.

(Robert Lea)

Back with a Blast: The LHC Fires Up Again

The world’s largest, most powerful particle accelerator, the Large Hadron Collider (LHC) ceased operations in 2018 and this year, after high-luminosity upgrades, it will begin to collide particles again.

During its first run of collisions from 2008 to 2013 physicists successfully uncovered the Higgs Boson, thus completing the standard model of particle physics. With the number of collisions increased significantly, in turn, increasing the chance of spotting new phenomenon, researchers will be looking for clues of physics beyond the standard model.

All quiet at the LHC in 2019, but the world’s largest particle accelerator will fire up again in 2021 (Robert Lea)

The function of the LHC is to accelerate particles and guide them with powerful magnets placed throughout a circular chamber that runs for 17 miles beneath the French-Swiss border. When these particles collide they produce showers of ‘daughter’ particles, some that can only exist at high energy levels.

These daughter particles decay extremely quickly–within fractions of a second– and thus spotting them presents a massive challenge for researchers.

Luminosity when used in terms of particle accelerators refers to the number of particles that the machine can accelerate and thus collide. More collisions mean more daughter particles created, and a better chance of spotting exotic and rare never before seen particles and phenomena. Thus, high luminosity means more particles and more collisions.

To put these upgrades in context, during 2017 the LHC produced around 3 million Higgs Boson particles. When the High-Luminosity LHC (HL-LHC) begins operations, researchers at cern estimate it will be producing around 15 million Higgs Bosons per year.

After being shut down for upgrades in 2018, the LHC prepares to fire up again in 2021 (CERN)

Unfortunately, despite firing up for a third run after these high luminosity upgrades, there is still work to be done before the LHC becomes the HL-LHC.

The shutdown that is drawing to completion–referred to by the CERN team as  Long Shutdown 2 (LS2)–was just part of the long operations that are required to boost the LHC’s luminosity. The project began in 2011 and isn’t expected to reach fruition until at least 2027.

That doesn’t mean that the third run of humankind’s most audacious science experiment won’t collect data that reveals stunning facts about the physics that governs that cosmos. And that collection process will begin in 2021.

A Big Blue Marble. A History of Earth from Space

“As the Sun came up I was absolutely blown away by how incredibly beautiful our planet Earth is. Absolutely breathtaking. Like someone took the most brilliant blue paint and painted a mural right in front of my eyes. I knew right then and there that I would never, ever see anything as beautiful as planet Earth again.”

Scott Kelly, Former NASA Astronaut
The Blue Marble. Taken by the crew of Apollo 17 in 1972 at a distance of 29,000 km above the planet. (NASA/Apollo 17 crew)

There is a common experience shared by human beings who visit that edge of space when they turn back and look upon their home planet. In that most fleeting of moments, they see the beauty and delicacy of our homeworld. It’s clearly not a view that many of us will get to experience in person, certainly not for the foreseeable future at least.

Despite that, thanks to some incredible photography and imaging techniques we too can view Earth from space and get a sense of our place in the solar system and the wider universe. 

The term ‘Big Blue Marble’ as it applies to Earth refers to an image captured of our planet by the Apollo 17 astronauts in December 1972. The image — officially designated as AS17–148–22727 by NASA— was taken at 29 thousand kilometres above the Earth by the crew of the spacecraft as it headed to the Moon.

Turning their view back on our planet, the astronomers caught a stunning image of the Mediterranean Sea to Antarctica. The image shows the south hemisphere heavily shrouded by clouds and represents the first time that an Apollo craft had been able to capture the southern polar ice caps.

The original uncropped AS17–148–22727 from which 'the Blue Marble' is taken. (NASA/Apollo 17 crew)
The original uncropped AS17–148–22727 from which ‘the Blue Marble’ is taken. (NASA/Apollo 17 crew)

Perhaps the most extraordinary thing about AS17-148-22727 is that it wasn’t supposed to exist. The crew weren’t scheduled to take an image at that point in their journey.

The fact that the photo was snapped very much during a ‘stolen moment’ aboard the craft and during a mission that was tightly scheduled down to the minute, makes the fleeting beauty it presents even more striking, as too does the fact that no human since has travelled far enough away from the surface of the planet to take such an image.

Since being taken ‘the Blue Marble’ has rightfully become one of the most reproduced images in human history. Though the most famous image of Earth from a space-based vantage point and a rare example of the glimpse of a fully illuminated globe, AS17–148–22727 is just one of a cavalcade of stunning images of our planet taken over seven decades.

The very first of these images were captured in perhaps the most unusual and ironic of circumstances. 

The Early days of Earth Photography: Recovering from War

“Consider again that dot [Earth]. That’s here. That’s home. That’s us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. The aggregate of our joy and suffering, thousands of confident religions, ideologies, and economic doctrines, every hunter and forager, every hero and coward, every creator and destroyer of civilization, every king and peasant, every young couple in love, every mother and father, hopeful child, inventor and explorer, every teacher of morals, every corrupt politician, every ‘superstar,’ every ‘supreme leader,’ every saint and sinner in the history of our species lived there – on a mote of dust suspended in a sunbeam.”

Carl Sagan, Pale Blue Dot: A Vision of the Human Future in Space
The first image of Earth taken from space in 1946 (White Sands Missile Range / Applied Physics Laboratory)

During the Second World War German V2s caused untold amounts of damage upon the cities of Europe, raining death from the skies and bringing profound fear and sorrow. It’s somewhat ironic then that the scientific marvel of the first image of Earth from space was delivered by one of these fearsome rockets.

Several V2s– Vergeltungswaffe 2, the world’s first long-range guided ballistic missiles–had been reclaimed by the United States as part of Operation Paperclip. The aim, however, was to use their incredible supersonic speed not to escape radar detection, as had been the case during the war, but to escape the confines of the atmosphere.

The rockets had their explosive payloads removed from their nosecones and replaced with scientific equipment.

On 24th October 1946, experiments with the V2s would result in a tangible benefit and a legitimate scientific breakthrough. A rocket launched from the White Sands Missile Range in New Mexico, USA, would capture an image of the Earth from an altitude of 105km. Up until this point in time, the highest an image of earth that had been taken was 22km by equipment aboard a high-altitude balloon.

The image was captured by a 35mm camera in the device’s nosecone which was set to capture a picture every 1.5 seconds. These images were then dropped back to earth in a steel canister and developed.

(White Sands Missile Range / Applied Physics Laboratory)

The V2 program and the series of experiments that it birthed would help US scientists lay the groundwork for future space exploration and was reflected by similar experiments in the Soviet Union at the time. These programs and the reclamation of German technology and the scientists behind it was responsible for launching the space race of the 1950s and 1960s. And no goal or aspiration would encompass this heated scientific battle more than the desire to put a human on the Moon.

The Earth and the Moon: Picturing a Perfect Partnership

“Orbiting Earth in the spaceship, I saw how beautiful our planet is. People, let us preserve and increase this beauty, not destroy it!”

Yuri Gagarin, the first human in space (12 April 1961)
A view of the Earth from the Moon taken by NASA’s Lunar Orbiter 1 in 1966 (NASA/ LOIRP).

By 1966 when the image above was captured the space race was in full swing. The USSR had launched both Sputnik 1 & 2 into orbit in October and November 1957 respectively, with the first becoming the original Earth-orbiting satellite and the second carrying a dog named Laika into space.

This would quickly be followed by US satellites Explorer 1 carrying experimental equipment that would lead to the discovery of the Van Allen radiation belt, and the world’s first communications satellite SCORE, both in 1958. In the same year, the National Aeronautics and Space Administration (NASA) would be created to replace the National Advisory Committee on Aeronautics (NACA).

Earth rises above the Moon’s horizon as seen by Apollo 11 (NASA/ JSC)


Most significantly, in 1961 the Soviets would put the first human being into orbit. Cosmonaut Yuri Gagarin made a single orbit around the Earth at a speed of over 27 thousand kilometres per hour during his 108-minute stay in space.

Yet, it wasn’t the Soviets that captured the stunning image above of earth from the vicinity of the Moon’s surface. That honour belongs to the US craft Lunar Orbiter 1 (LU-A). The NASA spacecraft was the first US mission to orbit the Moon, its primary task was to photograph not the Earth but rather potential landing sites on the Moon for the upcoming Apollo missions.

Again, as was the case with Apollo 17’s ‘Blue Marble’, the image of Earth from space taken by Lu-A taken on August 28th 1966 by the onboard Eastman Kodak imaging system was completely unplanned.

In 1969 many of the Apollo missions themselves would capture stunning and evocative images of the Earth rising above the crest of the Moon’s surface–including the above image captured by Apollo 11 and the one below taken by Apollo 8. These ‘Earthrise’ photographs would become a popular expression of Earth’s relative isolation and vulnerability.

NASA’s Lunar Reconnaissance Orbiter (LRO) captured a unique view of Earth from the spacecraft’s vantage point in orbit around the moon on October 12, 2015. (NASA/ Goddard/ Arizona State University).

The Earth From the Surface of an Alien World

“The vast loneliness is awe-inspiring and it makes you realize just what you have back there on Earth.” 

Jim Lovell, Apollo 8 Command Module Pilot, during a live broadcast from the Moon on Christmas Eve 1968.

It’s no great surprise given our advancing exploration of space that our attention has turned to the view of Earth from other alien worlds. Even though we are still capturing amazing images from that vantage point such as the one above taken by NASA’s Lunar Reconnaissance Orbiter mission in 2015, our horizons have also broadened to a view of our homeworld from the surface of more distant worlds.

The first image ever taken of Earth from the surface of a planet beyond the Moon. It was taken by the Mars Exploration Rover Spirit (NASA/JPL/Cornell/Texas A&M)

The first image of earth taken from another planet (above) was captured by the Mars Exploration Rover Spirit on the 63rd Martian day of its mission in 2004. Earth was only visible in the image–comprised from images taken by the now silent robotic rover’s four panoramic cameras–after all the colour filters were removed.

This was followed up in January 2014 by NASA’s Curiosity Rover when it captured its first glimpse of Earth from the surface of Mars.

NASA’s Mars rover Curiosity took this photo of Earth from the surface of Mars on Jan. 31, 2014, 40 minutes after local sunset, using the left-eye camera on its mast. Inset: A zoomed-in view of the Earth and moon in the image. (NASA/JPL-Caltech/MSSS/TAMU)

Whilst Mars Exploration Rover Spirit and the Curiosity Rover images may not be the most visually spectacular in the catalogue built during seven decades of space exploration, it stands as a testament to man’s determination to explore other worlds. a determination that nows carries us beyond the solar system.


This composite image of Earth and its moon, as seen from Mars, combines the best Earth image with the best moon image from four sets of images acquired on Nov. 20, 2016, by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter. (NASA/JPL-Caltech/Univ. of Arizona)

A View on the Future

“You develop an instant global consciousness, a people orientation, an intense dissatisfaction with the state of the world, and a compulsion to do something about it. From out there on the moon, international politics look so petty. You want to grab a politician by the scruff of the neck and drag him a quarter of a million miles out and say, ‘Look at that, you son of a bitch!’ “

Edgar Mitchell, Apollo 14 astronaut and the sixth person to walk on the Moon.
Deep Space Climate Observatory (DSCOVR)

As we continue to expand our view of the Universe studying cosmic bodies further and further from our own solar system, the history of space photography reminds us that it is vital we keep a view on our own planet, too. It’s a testament to our scientific progress that the hardest element about putting together a brief article about images of Earth from space that it involved sifting through thousands of incredible pictures.

Currently, NASA’s fleet of satellites consists of many craft devoted to the observation of Earth from space. Often this observation from a cosmic vantage point has the benefit of providing perspective on the damage we are doing to our world. Not only this but NASA’s continued observation of our world allows us to better understand weather patterns and mitigate potential disasters.

Humanity has never been in a better position to understand our world and its place within the wider Universe. The view of our planet from space has shown us its fragility, vulnerability, and the lengths we must go to preserve this beautiful blue marble.

“It is crystal clear from up here that everything is finite on this little blue marble in a black space, and there is no planet B.”

Alexander Gerst, European Space Agency astronaut, to world leaders live from the ISS, December 17th 2018.

Rare photos of the Moon, as the Apollo astronauts witnessed it

It’s already been 48 years since those amazing moments, but their image is still as inspiring as ever.

Apollo 11 astronaut Edwin “Buzz” Aldrin poses with the US flag planted on the Sea of Tranquility. If you look closely, you can see Aldrin’s face through his helmet visor.

On July 20, 1969, the Lunar Module Eagle separated from the Command Module Columbia. Left alone on the shuttle, Michael Collins watched as the Eagle pirouetted before him, safely carrying Neil Armstrong and Buzz Aldrin towards the surface of the Moon. The seconds were long, but they came to an end, as Armstrong’s timeless words resounded across the entire planet.

“Houston, Tranquility Base here. The Eagle has landed.”

Buzz Aldrin walking on the Moon. Photo snapped by Neil Armstrong.

But even that would be topped. Broadcasted to a global audience, Armstrong stepped onto the lunar surface, describing the event in even more iconic words: “one small step for [a] man, one giant leap for mankind,” he said. For the most part, Armstrong operated the camera, which meant that most of the footage is of Aldrin. But it was Armstrong who first stepped on the moon, unveiling a plaque signed by the astronauts and President Nixon

“Here men from the planet Earth first set foot upon the Moon, July 1969 A.D. We came in peace for all mankind.”

The view of Earth from the surface of the Moon during the Apollo 11 mission. Tranquility indeed.

Armstrong and Aldrin spent just under a day on the lunar surface, collecting rocks and planting a flag, but it was a day that inspired generations and generations of scientists and explorers. The most advanced technological feat of the time, and the first time a human being had set foot on an extraterrestrial body. Oh, and they did it with less processing power than your smartphone.

But it wasn’t just the Apollo 11. The whole Apollo project propelled science and space exploration into a new world, expanding the limits of our knowledge beyond what many thought was possible.

Astronaut Dave Scott pokes his head out of the Apollo 9 command module while it orbits Earth.

These images do a great deal to capture that spirit. Archived by NASA and arranged by Kipp Teague, a volunteer historian who runs the Project Apollo Archive, they tell a wonderful story. A story of courage, hard work, and intelligence. A triumph of science over a “magnificent desolation.” Sure, you could say it was a part of the Cold War, you could say it was a political impetus that caused these achievements, but at the end of the day, it was the work of brilliant men and women that got the job done.

Here’s to them!

Apollo 11 astronaut Neil Armstrong in the lunar module shortly after taking the first steps on the moon’s surface.

This July 20, 1969 photograph of the interior view of the Apollo 11 Lunar Module shows astronaut Edwin E. “Buzz” Aldrin, Jr. during the lunar landing mission. The picture was taken by Armstrong, prior to the landing.

It was not with ease that this was done — and nothing illustrates that better than Apollo 13. It was supposed to be the third mission to reach the Moon, but two days after takeoff, an oxygen tank exploded. Rather ironically, the shuttle passed the far side of the Moon, to this day remaining the farthest humans have ever traveled from Earth.

After them, other missions were successful in reaching the Moon. Apollo 17 was the final mission of NASA’s Apollo program, and it was the last time mankind has set foot on the Moon. It was in 1972.

A close-up view of astronaut Buzz Aldrin’s bootprint in the lunar soil, photographed with the 70mm lunar surface camera during Apollo 11’s sojourn on the moon.

Astronaut James B. Irwin with Apollo 15’s Lunar Roving Vehicle.

Apollo 16 astronaut John Young, along with Charles Duke, set up the first lunar surface cosmic ray detector.

An Apollo 17 astronaut takes a sample of a rock on the Moon.

An Apollo 15 astronaut walks next to tracks left by the Lunar Roving Vehicle. Apollo 15 was the first Apollo mission that packed a “moon buggy.”

A bit of lunar perspective. NASA designed the Lunar Roving Vehicle to operate in low gravity and allow the astronauts to traverse more ground during their short time on the Moon’s surface.

All images courtesy of NASA.

The main control panel of the spacecraft contains essential switches and indicators that had to be referred to and operated during the most crucial aspects of the flight. Numbers and references written by hand onto the panel can be checked against the audio and written transcripts from the mission to provide a more vivid picture of just what transpired. Image: Smithsonian Institution

Apollo 11 astronauts made graffiti on the walls of their spaceship

The main control panel of the spacecraft contains essential switches and indicators that had to be referred to and operated during the most crucial aspects of the flight. Numbers and references written by hand onto the panel can be checked against the audio and written transcripts from the mission to provide a more vivid picture of just what transpired. Image: Smithsonian Institution

The main control panel of the spacecraft contains essential switches and indicators that had to be referred to and operated during the most crucial aspects of the flight. Numbers and references written by hand onto the panel can be checked against the audio and written transcripts from the mission to provide a more vivid picture of just what transpired. Image: Smithsonian Institution

While 3-D scanning the Columbia command module used by the Apollo 11 astronauts to splash down back on Earth, researchers found some amazing artifacts: graffiti markings. These haven’t been seen for almost 50 years and include notes, figures and calendars written by the astronauts during the first ever manned flight to the moon. The scanning project is a joint venture between the  National Air and Space Museum and the Smithsonian’s 3D Digitization Program.

“As curator of what is arguably one of the most iconic artifacts in the entire Smithsonian collection, it’s thrilling to know that we can still learn new things about Columbia,” said Allan Needell, curator of space history at the museum. “This isn’t just a piece of machinery, it’s a living artifact.”

A tiny calendar marking the days of the missions, each marked off with an “X” except for the very last day! The calendar is covered with a plastic sheet held by tape. Image: Smithsonian Institution

"Launch day" and "Urine bags". Might seem weird, but it's called improvisation at the end of the day. Before the waste management system kicked in, the astronauts had to store the urine somewhere, so they choose that locker and labeled it to prevent, uhm, accidental contamination. Image: Smithsonian Institution

“Launch day” and “Urine bags”. Might seem weird, but it’s called improvisation at the end of the day. Before the waste management system kicked in, the astronauts had to store the urine somewhere, so they choose that locker and labeled it to prevent, uhm, accidental contamination. Image: Smithsonian Institution

 

“Smelly Waste” — you don’t want to open locker B2! Image: Smithsonian Institution

apollo mission

Following splashdown,while en route to Hawaii on the USS Hornet, Michael Collins crawled back into the command module (it was connected to the mobile quarantine facility by an air-tight tunnel) and wrote this short note on one of the equipment bay panels. The inscription reads: “Spacecraft 107, alias Apollo 11, alias “Columbia.” The Best Ship to Come Down the Line. God Bless Her. Michael Collins, CMP”

 

The two museums had to overcome many challenges to ultimately 3-D scan the whole command module. Thanks to their efforts we now have a high-resolution interactive model of the entire spacecraft which will soon be released to the public.  The model will be available in June on 3d.si.edu and used to produce an interactive display in the museum’s exhibition “Destination Moon,” scheduled to open in 2020.

 

 

LK Lander: The Soviet Moon Landing Program [PHOTOS]

One of the most intense Cold War fronts, and probably the only one to actually provide mankind a monumental legacy, was the so called space race. Each of the behemoth nations battled each other for space supremacy for decades raising hopes for millions of people as to someday the stars may belong to man and spending billions of dollars/rubles.

In the early space rage stage the soviets clearly dominated the US having successfully launched the first orbiting satellite in space, the first spaceship to carry a living being (primates, then dogs), the first man-made probe to land on the moon and the first manned space flight (Yuri Gagarin). The grand prize however was taken by the US in 1969 when the most memorable space flight, Apollo 11, took off with a three man crew into outer space on course for the moon. On the day of July 20th 1969, the Neil Armstrong, an American, was the first man to set foot on the moon, bringing glory to his homeland and ruin to the soviet’s own moon landing mission.

The main soviet lunar mission revolved around the LK lander, a module very similar to the infamous Eagle, which after a series of partial unsuccessful unmanned tests, the project was retired in 1972. Currently, the LK lander is hidden away at the Moscow Aviation Institute, away from curious eyes. A student managed to take some quick, but incredible photographs of the lander, much of the docking equipment, and diagrams, after which he posted them on his livejournal.

Behold the engineering relic.

New footage of Moon Landing found

A long lost footage of the best minutes of the moon landing (Neil Armstrong going down the ladder) has been found in Australian archives and will be released next week in Sidney. Wait, What ?! How do you lose footage of the Moon landing ? Just like that, according to Australian archivists.

The film was lost for decades and when found, was badly damaged, according to John Sarkissian, historian and astronomer in Sidney. He also said that this was the “best quality of Armstrong descending the ladder“.

“NASA were using the Goldstone (California) station signal, which had its settings wrong, but in the signals being received by the Australian stations you can actually see Armstrong. In what people have seen before you can barely see Armstrong at all, you can see something black — that was his leg.”

From the available information, the footage is just a few minutes long, and will be released next Wednesday, at the awards night of Australian Geographic magazine, where Buzz Aldrin, astronaut on Apollo 11 will be the guest of honor.