Tag Archives: internet of things

Stretchable electronics could be as ‘multipurpose as your phone’

A group of researchers managed to stack and connect layers of electronics on top of each other to essentially build 3D stretchable electronics that can serve complex and diverse functions while remaining low in size.

The proof of concept, compared to a US dollar coin. Image credits: Zhenlong Huang / University of California San Diego.

Smart everything

Few things have revolutionized our world like electronics. In our pockets, we carry smartphones — devices which not only allow us to call essentially anyone in the world but also to access all the world’s knowledge and content at the click of a button; they’re good for playing silly games, too. But phones aren’t the only things getting smart. We have smart cars, smart homes, and even smart clothes — all thanks to the ever-advancing electronics.

But there are limits. Building 3D electronics that are small enough and able to carry out complex functions has proven very challenging.

“Our vision is to make 3D stretchable electronics that are as multifunctional and high-performing as today’s rigid electronics,” said senior author Sheng Xu, a professor in the Department of NanoEngineering and the Center for Wearable Sensors at the UC San Diego Jacobs School of Engineering.

The new technology can have far-reaching implications. For instance, consider smart sensors — a stretchable electronic bandage could be used to monitor patient’s body functions such as respiration, body motion, temperature, eye movement, heart and brain activity. Xu and colleagues built a prototype, which can do all this and control a robotic arm.

“Rigid electronics can offer a lot of functionality on a small footprint–they can easily be manufactured with as many as 50 layers of circuits that are all intricately connected, with a lot of chips and components packed densely inside. Our goal is to achieve that with stretchable electronics,” said Xu.

The new device consists of four layers of interconnected, stretchable, flexible circuit boards, featuring so-called “island-bridge” design. The “island” is a small, rigid electronic part (sensor, antenna, Bluetooth chip, amplifier, accelerometer, resistor, capacitor, inductor, etc.), while the “bridge” is made of thin copper wires which allow the circuits to twist and bend without losing functionality.

Researchers say they don’t have a specific purpose in mind, but the potential applications are limitless — wherever flexible circuits and electronics are necessary, the new technology could do wonders.

“We didn’t have a specific end use for all these functions combined together, but the point is that we can integrate all these different sensing capabilities on the same small bandage,” added co-first author Zhenlong Huang, a visiting Ph.D. student in Xu’s research group.

The new device has been shown to function for six months without losing any of its functionality or power. The team is now working with to improve and finesse the technology. Hopefully, it won’t be long before the technology is tested in a clinical setting.

The study has been published in Nature Electronics.

smartphone PIN

Security experts crack smartphone PIN using only the motion sensor data. By the third try, the algorithm was 94 percent accurate

smartphone PIN

Credit: YouTube.

Is your smartphone really a phone or just a tinier computer? It’s a question that’s getting increasingly harder to answer as the people engage with their handheld devices more in areas that were traditionally reserved for desktop or notebooks. To support a wealth of rich features and technologies like sharp graphics and tactile feedback, smartphones have grown to be very well equipped with all sorts of sensors. The more complex the machine, however, the greater the security risk.

Case in point: British researchers from Newcastle University showed that simply by monitoring and interpreting data recorded by a phone’s sensors like the accelerometer, gyroscope, or magnetometer, they could infer a person’s four-digit PIN. When people tap in their PIN, the phone has a distinct orientation and motion which can be used to guess the code.

The team led by Maryam Mehrnezhad developed an artificial neural network — algorithms loosely modeled after the neuronal structure of the human brain — to guess the PIN from input sensor data. The team proved last year that they could access it by attacking the phone through a javascript exploit delivered through the phone’s browser. A user only had to click on a link for an attacker to get hold of all the sensor data, and this worked even if the phone was locked after the link was clicked on for some browsers like Apple’s Safari.

The system was initially trained with sensor data sourced from controlled smartphones where the PIN was known. After a couple of rounds, the researchers were able to figure out a user’s PIN 74 percent of the time on the first try. On the third try, the number rose to 94 percent, the researchers reported in the International Journal of Information Security. Does that shock you? I’ve heard crazier things. Last year, researchers stole data from computers by using little more than the sound emitted by the cooling fans inside.

Mehrnezhad says they’ve informed all the browsers of the exploits and these have reportedly been fixed but that’s not to say there aren’t other loopholes.

“A combination of different approaches might help researchers devise a usable and secure solution. Having control on granting access before opening a website and during working with it, in combination with a smart notification feature in the browser would probably achieve a balance between security and usability,” the researchers recommended in their paper.

The study clearly shows smartphones are a lot more vulnerable than some people care to think. The fact that smartphone data is so tempting will make attacks even more common and sophisticated. Ten years ago, if your computer got hacked you risked a lot of damage like having your emails scrapped or credit card information stolen. When this happens to a smartphone today, you lose that and much more. That’s because our smartphones are far more intimate connoisseurs of our lives. We bring them with us everywhere, use them to instant message friends, buy things online, navigate surroundings, and so on. If someone knows what they’re doing they can learn more about you and your darkest secrets maybe even better than yourself.

It’s not only smartphone users that should be worried. Everything is getting ‘smarter’. All major cities, especially those that are designed from the ground-up today like some experiments in Dubai or Singapore, will be crowded with sensors that record everything from pollution, to the weather, to traffic. Then, there are networked driverless cars, thermostats, fridges, or even toasters collectively classed under the Internet of Things (IoT). This huge wealth of data will make our lives better but at the same time companies need to be aware of the rising security vulnerabilities.

iot-body-password

The safest locks might be those encrypted by passwords transmitted through the body

iot-body-password

Using low-frequency signals, UW researchers have found a way to transmit passwords through the human body. They claim this provides more security. Credit: Mark Stone/University of Washington

The Internet of Things (IoT) means more and more household items will become digitized and networked. Some of the most popular IoT items will be door locks and University of Washington researchers are proposing a novel security technology to keep these safe from hackers. Their idea involves unlocking smart doors with your smartphone by using the human body as the signal transfer medium. Since no wireless or Bluetooth is involved, there is no risk of having your password stolen from airborne radiowaves.

“Let’s say I want to open a door using an electronic smart lock,” said Mehrdad Hessar, a doctoral student at UW and one of the leader authors, in a statement. “I can touch the doorknob and touch the fingerprint sensor on my phone and transmit my secret credentials through my body to open the door, without leaking that personal information over the air.”

Our bodies are actually good conductors of electricity, which most of the time is undesirable. But this property can be used to our advantage, the UW researchers believe.

Their technology is based on low-frequency signals whose current is so low they can’t be felt by the human body, yet high enough to transmit data. To demonstrate, ten volunteers placed their index fingers on the fingerprint sensors of either an iPhone or Lenovo taptop. The UW-developed app then transmitted a signal through the finger, to the rest of the body and ultimately to a custom receiver which came in contact with a part of the volunteer’s body.

The technology could be used to open smart locks. Just hold one hand on the phone's fingerprint sensor and the other on the door's handle. Credit: Vikram Iyer, University of Washington

The technology could be used to open smart locks. Just hold one hand on the phone’s fingerprint sensor and the other on the door’s handle. Credit: Vikram Iyer, University of Washington

Results suggest this technique can achieve a data transfer of 50 bits per second if a laptop’s touch pad is used or 25 bits per second using the finger print sensor. You won’t be using your body to stream Netflix anytime soon, but the rate is more than enough to transmit a password made of a few characters (bytes). Better data transfer can be achieved if the sensors’ manufacturers share their software, the UW team said.

“We showed that it works in different postures like standing, sitting and sleeping,” said co-lead author Vikram Iyer, a UW electrical engineering doctoral student. “We can also get a strong signal throughout your body. The receivers can be anywhere — on your leg, chest, hands — and still work.”

At this point is worth noting that while your phone’s fingerprint sensor stores and analyzes your unique fingerprint pattern, the UW technology is totally unrelated. It just uses the sensor as a transmission medium and your fingerprints aren’t involved in any way in the process.

“Fingerprint sensors have so far been used as an input device. What is cool is that we’ve shown for the first time that fingerprint sensors can be re-purposed to send out information that is confined to the body,” said senior author Shyam Gollakota, UW assistant professor of computer science and engineering.

Besides opening the future’s annoying internet-enabled door locks, the technology could prove useful in the medical sector. For instance, glucose monitors or insulin pumps could use body-transmitted passwords to confirm someone’s identity before sending or sharing data.

The UW technique was described in a paper presented in September at the 2016 Association for Computing Machinery’s International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2016) in Germany.

the-next-big-thing-0423

The ‘Next Big Things’ in Science Ten Years from Now

ZME Science reports the latest trends and advances in science on a daily basis. We believe this kind of reporting helps people keep up with an ever-changing world, while also fueling inspiration to do better.

But it can also get frustrating when you read about 44% efficiency solar panels and you, as a consumer, can’t have them. Of course, there is a momentary time lapse as the wave of innovation travels from early adopters to mainstream consumers. The first fully functional digital computer, the ENIAC, was invented in 1946, but it wasn’t until 1975 that Ed Roberts introduced the first personal computer, the Altair 8800. Think touch screen tech is a new thing? The first touch screen was invented by E.A. Johnson at the Royal Radar Establishment, Malvern, UK, between 1965 – 1967. In the 80s and 90s, some companies like Hewlett-Packard or Microsoft introduced several touch screen products with modest commercial success. It wasn’t until 2007 when Apple released the first iPhone that touch screen really became popular and accessible. And the list goes on.

the-next-big-thing-0423

The point I’m trying to make is that all the exciting stuff we’re seeing coming out of cutting-edge labs around the world will take time to mature and become truly integrated into society. It’s in the bubble stage, and for some the bubble will pop and the tech won’t survive. Other inventions and research might resurface many decades from now.

So, what’s the future going to look like in ten years from now? What’s the next big thing? It’s my personal opinion that, given the current pace of technological advancement, these sorts of estimates are very difficult, if not impossible, to make. As such, here are just a few of my guesses as to what technology — some new, other improved versions of what’s already mainstream today — will become an integral part of society in the future.

The next five years

Wearable devices

A hot trend right now is integrating technology into wearable devices. Glasses with cameras (such as Google Glasses) or watches that answer your phone calls (like the Apple Watch) are just a few products that are very popular right now. Industry experts believe we’re just scratching the surface, though.

Thanks to flexible electronics, clothing will soon house computers, sensors, or wireless receivers. But most of these need to connect to a smartphone to work. The real explosion of wearable tech might happen once these are able to break free and work independently.

“Smart devices, until they become untethered or do something interesting on their own, will be too complicated and not really fulfill the promise of what smart devices can do,” Mike Bell, head of Intel’s mobile business, said. “These devices have to be standalone and do something great on their own to get mass adoption. Then if they can do something else once you pair it, that’s fine.”

Internet of Things

In line with wearable devices is the Internet of Things — machines talking to one another, with computer-connected humans observing, analyzing, and acting upon the resulting ‘big data’ explosion. Refrigerators, toasters, and even trash cans could be computerized and, most importantly, networked. One of the better-known examples is Google’s Nest thermostat.

This Wi-Fi-connected thermostat allows you to remotely adjust the temperature of your home via your mobile device and also learns your behavioral patterns to create a temperature-setting schedule. Nest was acquired by Google for $3.2 billion in 2014. Another company, SmartThings, which Samsung acquired in August, offers various sensors and smart-home kits that can monitor things like who is coming in and out of your house and can alert you to potential water leaks to give homeowners peace of mind. Fed by sensors soon to number in the trillions, working with intelligent systems in the billions, and involving millions of applications, the Internet of Things will drive new consumer and business behavior the likes of which we’ve yet to see.

Big Data and Machine Learning

Big data is a hyped buzzword nowadays that’s used to describe massive sets of (both structured and unstructured) data which are hard to process using conventional techniques. Big data analytics can reveal insights previously hidden by data too costly to process. One example is peer influence among customers revealed by analyzing shoppers’ transaction, social, and geographical data.

With more and more information being stored online, especially s the internet of things and wearable tech gain in popularity, the world will soon reach an overload threshold. Sifting through this massive volume is thus imperative, and this is where machine learning comes in. Machine learning doesn’t refer to household robots, though. Instead, it’s a concept much closer to home. For instance, your email has a spam folder where email that fit a certain pattern are filtered through by an algorithm that has learned to distinguish between “spam” and “not spam”. Similarly, your Facebook feed is filled with posts from your closest friends because an algorithm has learned what your are preferences based on your interactions — likes, comments, shares, and clickthroughs.

Where big data and machine learning meet, an informational revolution awaits and there’s no field where the transforming potential is greater than medicine. Doctors will be aided by smart algorithms that mine their patient’s dataset, complete with previous diagnoses or genetic information. The algorithm would go through the vast records and correlate with medical information. For instance, a cancer patient might come in for treatment. The doctor would then be informed that since the patient has a certain gene or set of genes, a customized treatment would apply. Amazing!

Cryptocurrency

You might have heard of Bitcoin, but it’s not the only form of cryptocurrency. Today, there are thousands of cryptocurrencies. Unlike government-backed currencies, which are usually regulated and created by a central bank, cryptocurrencies are generated by computers that solve a complex series of algorithms and rely on decentralized, peer-to-peer networks. While these were just a fad a few years ago, things are a lot more serious now. Shortly after Bitcoin’s creation, one user spent 10,000 Bitcoin for two pizzas. That same amount of bitcoin would be worth about $8 million a few short years later. Today, they’re worth around $63 million.

There’s much debate surrounding cryptocurrency. For instance, because it’s decentralized and anonymous, Bitcoin has been used and is used to fund illegal activities. Also, there’s always the risk of a computer crash erasing your wallet or a hacker ransacking your virtual vault. Most of these concerns aren’t all that different to those concerned about traditional money, though, and with time, cryptocurrencies could become very secure.

Driverless cars

In 2012, California was the first state to formally legalize driverless cars. The UK is set to follow this year.

Some 1.2 million people worldwide die in car accidents every year. Tests so far have shown that driverless cars are very safe and should greatly reduce motor accidents. In fact, if all the cars on a motorway were driverless and networked, then theoretically no accident should ever occur. Moreover, algorithms would make sure that you’d get the best traffic flow possible as mathematical functions would calculate what velocity a car should go relative to one another such that the whole column would move forward at maximum speed. Of course, this would mean that most people would have to give up driving, which isn’t an option among those who enjoy it. Even so, you could get to work alone in the car without a driver’s license. “Almost every car company is working on automated vehicles,” says Sven Beiker, the executive director of the Center for Automotive Research at Stanford.

3D printing

A 3D printer reads every slice (or 2D image) of your virtual object and proceeds to create the object, blending each layer together with no sign of the layering visible, resulting in a single 3D object. It’s not exactly new. Companies, especially in the R&D or automotive business, have been using 3D printers to make molds and prototypes for more than two decades. What’s new is how this technology has arrived to the common folk. Nowadays, you can buy a decent 3D printer for less than $600. With it, you can print spare parts for your broken machines, make art, or whatever else suits your fancy.

You don’t even have to know how to design. Digital libraries for 3D parts are growing rapidly and soon enough you should be able to print whatever you need. The technology itself is also advancing. We’ve seen 3D printed homes, cars, or ears, and this is just the beginning. Scientists believe they can eventually 3D print functioning organs that are custom made for each patient, saving millions of lives each year.

Virtual reality

The roots of virtual reality can be traced to the late 1950s, at a time when computers where confined Goliaths the size of a house. A young electrical engineer and former naval radar technician named Douglas Engelbart saw computers’ potential as a digital display and laid the foundation for virtual reality. Fast forward to today and not that much has become of VR — at least not the way we’ve seen in movies.

But if we were to try on the proverbial VR goggles what insight into the future might they grant? Well, you’d see a place for VR that goes far beyond video games, like the kind Oculus Rift strives towards. Multi-player VR provides the foundation by which a class of students can go on a virtual tour of the Egyptian pyramids, let a group of friends watch the latest episode of “Game of Thrones” together, or let the elderly experience what it is like to share a visit with their grandkids who may be halfway around the world. Where VR might be most useful is not in fabricating fantasies, but enriching reality by connecting people like never before. It’s terribly exciting.

Genomics

It’s been 10 years since the human genome was first sequenced. In that time, the cost of sequencing per person has fallen from $2.7bn to just $5,000! Raymond McAuley, a leading genomics researcher, predicted in a lecture at Singularity University’s Exponential Finance 2014 conference that we will be sequencing DNA for pennies by 2020.  When sequencing is applied to a mass population, we will have mass data, and who knows what that data will reveal?

The next ten years

Nanotechnology

There is increasing optimism that nanotechnology applied to medicine and dentistry will bring significant advances in the diagnosis, treatment, and prevention of disease. Many researchers believe scientific devices that are dwarfed by dust mites may one day be capable of grand biomedical miracles.

Donald Eigler is renowned for his breakthrough work in the precise manipulation of matter at the atomic level. In 1989, he spelled the letters IBM using 35 carefully manipulated individual xenon atoms. He imagines one day “hijacking the brilliant mechanisms of biology” to create functional non-biological nanosystems. “In my dreams I can imagine some environmentally safe virus, which, by design, manufactures and spits out a 64-bit adder. We then just flow the virus’s effluent over our chips and have the adders attach in just the right places. That’s pretty far-fetched stuff, but I think it less far-fetched than Feynman in ’59.”

Angela Belcher is widely known for her work on evolving new materials for energy, electronics, and the environment. The W. M. Keck Professor of Energy, Materials Science & Engineering and Biological Engineering at the Massachusetts Institute of Technology, Belcher believes the big impact of nanotechnology and nanoscience will be in manufacturing -– specifically clean manufacturing of materials with new routes to the synthesis of materials, less waste, and self-assembling materials.

“It’s happening right now, if you look at the manufacturing of certain materials for, say, batteries for vehicles, which is based on nanostructuring of materials and getting the right combination of materials together at the nanoscale. Imagine what a big impact that could have in the environment in terms of reducing fossil fuels. So clean manufacturing is one area where I think we will definitely see advances in the next 10 years or so.”

David Awschalom is a professor of physics and electrical and computer engineering at the University of California, Santa Barbara. As pioneer in the field of semiconductor spintronics, in the next decade or two, Awschalom would like to see the emergence of genuine quantum technology. “I’m thinking about possible multifunctional systems that combine logic, storage, communication as powerful quantum objects based on single particles in nature. And whether this is rooted in a biological system, or a chemical system, or a solid state system may not matter and may lead to revolutionary applications in technology, medicine, energy, or other areas.”

Graphene

ZME Science has never backed down from praising graphene, the one atom thick carbon allotrope arranged in a hexagon lattice — and for good reason, too. Here are just a few highlights we’ve reported: it can repair itself; it’s the thinnest compound known to us; the lightest material (with 1 square meter coming in at around 0.77 milligrams); the strongest compound discovered (between 100-300 times stronger than steel and with a tensile stiffness of 150,000,000 psi); the best conductor of heat at room temperature; and the best conductor of electricity (studies have shown electron mobility at values of more than 15,000 cm2·V−1·s−1). It can be used to make anything, ranging from aircraft, to bulletproof vests ten times more protective than steel, to fuel cells. It can also be turned into an anti-cancer agent. Most of all, however, its transformative potential is greatest in the field of electronics, where it could replace poor old silicon, which is greatly pressed by Moore’s law.

Reading all this, it’s easy to hail graphene as the wonder material of the new age of technology that is to come. So, what’s next? Manufacturing, of course. The biggest hurdle scientists are currently facing is producing bulk graphene that is pure enough for industrial applications at a reasonable price. Once this is settled, who knows what will happen.

Mars Colony

After Neil Armstrong’s historic moonwalk, the world went drunk with dreams of conquering space. You’ve probably seen or heard about ‘prophecies’ made during those times of how the world might look like in the year 2000. But no, we don’t have moon bases, flying cars or a cure for cancer — yet.

In time, the interest for manned space exploration dwindled, something that can has been unfortunately reflected in NASA’s present budget. Progress has still been made, albeit not at the pace some might have liked. The International Space Station is a fantastic collaborative effort which is now nearing two decades of continued manned operation. Only two years ago, NASA landed the Curiosity rover, which is currently roaming the Red Planet and relaying startling facts about our neighboring planet. By all signs, men will walk on Mars and when this happens, as with Armstrong before, a new rejuvenated wave of enthusiasm for space exploration will ripple through society. And, ultimately, this will be consolidated with a manned outpost on Mars. I know what you must be thinking, but if we’re to lend our ears to NASA officials, this target isn’t that far off in time. By all accounts, it will most likely happen during your lifetime.

Beginning in 2018, NASA’s powerful Space Launch System rocket became operational, testing new abilities for space exploration, like a planned manned landing on an asteroid in 2025. Human missions to Mars will rely on Orion and an evolved version of SLS that will be the most powerful launch vehicle ever flown. Hopefully, NASA will fly astronauts to Mars (marstronauts?) sometime during the 2030s. Don’t get your hopes up too much for Mars One, however.

Wireless electricity

We’ve know about the possibilities for more than a century, most famously by the great Tesla during his famous lectures. The scientist would hang up a light bulb in the air and it would light up — all without any wires! The audience was dazzled every time by this performance. But this wasn’t any parlor trick — just a matter of current by induction.

Basically, Tesla relied on sets of huge coils which generated a magnetic field, which induces a current into the light bulb. Voila! In the future, wireless electricity will be accessible to anyone — as easy as WiFi is today. Smartphones will charge in your pocket as you wander around, televisions will flicker with no wires attached, and electric cars will refuel while sitting on the driveway. In fact, the technology is already in place. What is required is a huge infrastructure leap. Essentially, wirelessly charged devices need to be compatible with the charging stations and this requires a lot of effort from of both the charging suppliers and the device manufacturers. We’re getting there, though.

Nuclear Fusion

Nuclear fusion is essentially the opposite of nuclear fission. In fission, a heavy nucleus is split into smaller nuclei. With fusion, lighter nuclei are fused into a heavier nucleus.

The fusion process is the reaction that powers the sun. On the sun, in a series of nuclear reactions, four isotopes of hydrogen-1 are fused into a helium-4, which releases a tremendous amount of energy. The goal of scientists for the last 50 years has been the controlled release of energy from a fusion reaction. If the energy from a fusion reaction can be released slowly, it can be used to produce electricity in virtually unlimited quantities. Furthermore, there’s no waste materials to deal with or contaminants to harm the atmosphere. To achieve the nuclear fusion dream, scientists need to overcome three main constraints:

  • temperature (you need to put in a lot of energy to kick off fusion; helium atoms need to be heated to 40,000,000 degrees Kelvin — that’s hotter than the sun!)
  • time (charged nuclei must be held together close enough and long enough for the fusion reaction to start)
  • containment (at that temperature everything is a gas, so containment is a major challenge).

Though other projects exist elsewhere, nuclear fusion today is championed by the International Thermonuclear Experimental Reactor (ITER) project, founded in 1985, when the Soviet Union proposed to the U.S. that the countries work together to explore the peaceful applications of nuclear fusion. Since then, ITER has ballooned into a 35-country project with an estimated $50 billion price tag.

Key structures are still being built at ITER, and when ready the reactor will stand 100 feet tall, weigh 23,000 tons, and its core will be hotter than the sun. Once turned on (hopefully successfully), the ITER could solve the world’s energy problems for the foreseeable future, and help save the planet from environmental catastrophe.