Tag Archives: Generator

Plasma globe.

Solar plasma observations bring us one step closer to stable fusion generators

An international research effort brings us one step closer to unlocking fusion power on Earth.

Plasma globe.

A plasma globe toy.
Image via Pixabay.

The team of researchers, comprised of members from Ireland and France, used ground-based radio telescopes and ultraviolet cameras mounted on a NASA spacecraft to peer into the unseen workings of the Sun. Their observations give us a better understanding into how and why plasma becomes unstable. With this data in hand, researchers will hopefully be able to better control plasma down on Earth and potentially tame it into a clean, safe, and extremely powerful energy source.

Abundant, but not with us

“We worked closely with scientists at the Paris Observatory and performed observations of the Sun with a large radio telescope located in Nançay in central France,” says Dr. Eoin Carley, a postdoc at Trinity College Dublin and the Dublin Institute of Advanced Studies (DIAS), who led the research

“We combined the radio observations with ultraviolet cameras on NASA’s space-based Solar Dynamics Observatory spacecraft to show that plasma on the sun can often emit radio light that pulses like a light-house. We have known about this activity for decades, but our use of space and ground-based equipment allowed us to image the radio pulses for the first time and see exactly how plasmas become unstable in the solar atmosphere.”

We’re used to thinking of matter as predominantly being gaseous, liquid, solid, and a smattering of other rare and exotic states. That might be the case on Earth, but in the Universe at large, plasma is definitely the most abundant state of matter. Stars are huge things, and they’re mostly plasma, for example — our Sun included.

Plasma is a very energetic, very unstable electrically charged fluid. Conditions on our planet are simply too tame for it to pop up, so it’s extremely scarce and hard to study. Specialized laboratories that can recreate the extreme conditions of space are needed to properly study it. However, the team came up with a better plan: to just look at what the huge ball of plasma in the sky is doing. The Sun, they argue, gives us a chance to study how this state of matter behaves in conditions that are too extreme for any laboratory we’ve ever built.

“The solar atmosphere is a hotbed of extreme activity,” Dr. Carley adds, “with plasma temperatures in excess of 1 million degrees Celsius and particles that travel close to light-speed. The light-speed particles shine bright at radio wavelengths, so we’re able to monitor exactly how plasmas behave with large radio telescopes.”

The team used radio telescopes across Europe and ultraviolet cameras mounted on NASA spacecraft to observe solar plasma and compare its behavior to that of plasma we’ve generated. They hope that their data will help us design efficient magnetic confinement systems for our fusion reactors — these are the things that will keep plasma from liquefying out reactors’ walls. Successfully designing a working fusion reactor wouldn’t be a mean feat at all; these reactors are miles ahead of our current tech in terms of output, safety, and cleanliness.

“Nuclear fusion is a different type of nuclear energy generation that fuses plasma atoms together,” says Professor at DIAS and collaborator on the project, Peter Gallagher, “as opposed to breaking them apart like fission does. Fusion is more stable and safer, and it doesn’t require highly radioactive fuel; in fact, much of the waste material from fusion is inert helium.”

“The only problem is that nuclear fusion plasmas are highly unstable. As soon as the plasma starts generating energy, some natural process switches off the reaction. While this switch-off behaviour is like an inherent safety switch — fusion reactors cannot form runaway reactions — it also means the plasma is difficult to maintain in a stable state for energy generation. By studying how plasmas become unstable on the Sun, we can learn about how to control them on Earth.”

The paper “Loss-cone instability modulation due to a magnetohydrodynamic sausage mode oscillation in the solar corona” has been published in the journal Nature Communications.

Self assembling nano material brings us tangibly close to water-powered cars

Indiana University scientists have built a highly efficient bio-material that can serve as a catalyst for hydrogen production. This material takes us halfway towards the long sought-after “holy grail” of splitting water to make hydrogen and oxygen for fueling cheap and efficient cars that run on water.

Artist’s rendering of P22-Hyd, the new biomaterial created by encapsulating a hydrogen-producing enzyme within a virus shell.
Image via sciencedaily

The team started with an enzyme called hydrogenase that can extract pure hydrogen gas out of water. The substance broke down easily however, so they strengthened it by placing it inside the capsid (the protein shell) of a bacterial virus. The new material is now 150 times as efficient than the unaltered enzyme.

“Essentially, we’ve taken a virus’s ability to self-assemble myriad genetic building blocks and incorporated a very fragile and sensitive enzyme with the remarkable property of taking in protons and spitting out hydrogen gas,” said lead author Trevor Douglas, the Earl Blough Professor of Chemistry in the IU Bloomington College of Arts and Sciences’ Department of Chemistry.

“The end result is a virus-like particle that behaves the same as a highly sophisticated material that catalyzes the production of hydrogen.”

The hydrogenase was produced using genetic material harvested from the common bacteria Escherichia coli, namely the genes hyaA and hyaB. The enzyme was then inserted inside the protective capsid of a virus known as bacteriophage P22,using methods previously developed by IU scientists.

The resulting biomaterial, called “P22-Hyd,” is much more efficient and durable than the enzyme alone, and is obtained through fermentation process at room temperature. P22-Hyd is dirt cheap (fermentation is free) and more environmentally friendly than materials currently used for fuel cells. The authors compare it to platinum, the most commonly used hydrogen catalyst today.

“This material is comparable to platinum, except it’s truly renewable,” Douglas said.

“You don’t need to mine it; you can create it at room temperature on a massive scale using fermentation technology; it’s biodegradable. It’s a very green process to make a very high-end sustainable material.”

As a bonus, P22-Hyd both breaks the chemical bonds of water to create hydrogen and also works in reverse to recombine hydrogen and oxygen to generate power.

“The reaction runs both ways — it can be used either as a hydrogen production catalyst or as a fuel cell catalyst,” he added.

Out of three naturally ocuring forms of hydrogenase, the team chose to use nickel-iron (NiFe)-hydrogenase — the others being di-iron (FeFe)- and iron-only (Fe-only)-hydrogenase. This form was preferred due to its ability to easily integrate into biomaterials and tolerate exposure to oxygen.

Unaltered NiFe-hydrogenase is highly susceptible to destruction from chemicals in the environment and breaks down at room temperatures — a poor choice for fuel cells. Encapsulation allows it much greater chemical resistance and enables it to catalyze at temperatures exceeding “comfortable,” permitting its use in manufacturing and commercial products such as cars.

“[These shortcomings are] some of the key reasons enzymes haven’t previously lived up to their promise in technology,” Douglas added.

Another is their difficulty to produce.

“No one’s ever had a way to create a large enough amount of this hydrogenase despite its incredible potential for biofuel production. But now we’ve got a method to stabilize and produce high quantities of the material — and enormous increases in efficiency.”

Seung-Wuk Lee, professor of bioengineering at the University of California-Berkeley, whose work has been cited in a U.S. Congressional report on the use of viruses in manufacturing and unaffiliated with the study, applauds the team’s work, saying:

“Douglas’ group has been leading protein- or virus-based nanomaterial development for the last two decades. This is a new pioneering work to produce green and clean fuels to tackle the real-world energy problem that we face today and make an immediate impact in our life in the near future.”

Beyond the new study, Douglas and his colleagues continue to craft P22-Hyd into an ideal ingredient for hydrogen power by investigating ways to activate a catalytic reaction with sunlight, as opposed to introducing elections using laboratory methods.

“Incorporating this material into a solar-powered system is the next step,” Douglas concluded.