Tag Archives: general relativity

Computer simulation of gravitational wave emissions S. Ossokine, A. Buonanno (Max Planck Institute for Gravitational Physics), Simulating eXtreme Spacetimes project, W. Benger (Airborne Hydro Mapping GmbH)

What are Gravitational Waves?

Whilst it may not have the snappiest name, the event GW150914 is pretty significant in terms of our understanding of the Universe. This event, with a name that includes ‘GW’ as a prefix which is an abbreviation of ‘Gravitational Wave’ and the date of observation–15/09/14– marked humanity’s first direct detection of gravitational waves.

This was groundbreaking on two fronts; firstly it successfully confirmed a prediction made by Albert Einstein’s theory of general relativity almost a century before. A prediction that stated events occurring in the Universe do not just warp spacetime, but in certain cases, can actually send ripples through this cosmic fabric.

Numerical simulation of two inspiralling black holes that merge to form a new black hole. Shown are the black hole horizons, the strong gravitational field surrounding the black holes, and the gravitational waves produced ( S. Ossokine, A. Buonanno (Max Planck Institute for Gravitational Physics), Simulating eXtreme Spacetimes project, W. Benger (Airborne Hydro Mapping GmbH)).

The second significant aspect of this observation was the fact that it represented an entirely new way to ‘see’ the Universe, its events and objects. This new method of investigating the cosmos has given rise to an entirely new form of astronomy; multimessenger astronomy. This combines ‘traditional’ observations of the Universe in the electromagnetic spectrum with the detection of gravitational waves, thus allowing us to observe objects that were previously invisible to us.

Thus, the discovery of gravitational waves truly opened up an entirely new window on the cosmos, but what are gravitational waves, what do they reveal about the objects that create them, and how do we detect such tiny tremblings in reality itself?

Gravitational Waves: The Basics

  • Gravitational waves are ripples in the fabric of spacetime.
  • These ripples travel from their source at the speed of light.
  • The passage of gravitational waves squash and stretch space itself.
  • Gravitational waves can be detected by measuring these infinitesimally small changes in the distance between objects.
  • They are created when an object or an event that curves spacetime causes that curvature to change shape.
  • Amongst the causes of gravitational waves are colliding black holes and neutron stars, supernovae, and stars that are undergoing gravitational collapse.

Theoretical Underpinnings

Imagine sitting at the side of a lake, quietly observing the tranquil surface of the water undisturbed by nature, the wind, or even by the slightest breeze. Suddenly a small child runs past hurling a pebble into the lake. The tranquillity is momentarily shattered. But, even as peace returns, you watch ripples spread from the centre of the lake diminishing as they reach the banks, often splitting or reflecting back when they encounter an obstacle.

The surface of the lake is a loose 2D analogy for the fabric of spacetime, the pebble represents an event like the collision of two black holes, and our position on Earth is equivalent to a blade of grass on the bank barely feeling the ripple which has diminished tremendously in its journey to us.

Poincaré and Einstein both saw the possibility of gravitational waves propagating through space-time at the speed of light

Gravitational waves were first predicted by Henri Poincare in 1905 as disturbances in the fabric of spacetime that propagate at the speed of light, but it would take another ten years for the concept to really be seized upon by physicists. This happened when Albert Einstein predicted the same phenomenon as part of his revolutionary 1916 geometric theory of gravity, better known as general relativity.

Whilst this theory is most well-known for suggesting that objects with mass would cause warping of spacetime, it also went a step further positing that an accelerating object should change this curvature and cause a ripple to echo through spacetime. Such disturbances in spacetime would not have been permissible in the Newtonian view of gravity which saw the fabric of space and time as separate entities upon which the events of the Universe simply play out.

But upon Einstein’s dynamic and changing stage of united spacetime, such ripples were permissible.

Gravitational waves arose from the possibility of finding a wave-like solution to the tensor equations at the heart of general relativity. Einstein believed that gravitational waves should be generated en masse by the interaction of massive bodies such as binary systems of super-dense neutron stars and merging black holes.

The truth is that such ripples in spacetime should be generated by any accelerating objects but Earth-bound accelerating objects cause perturbations that are far too small to detect. Hence why our investigations must turn to areas of space where nature provides us with objects that are far more massive.

As these ripples radiate outwards from their source in all directions and at the speed of light, they carry information about the event or object that created them. Not only this, but gravitational waves can tell us a great deal about the nature of spacetime itself.

Where do Gravitational Waves Come From?

There are a number of events that can launch gravitational waves powerful enough for us to detect with incredibly precise equipment here on Earth. These events are some of the most powerful and violent occurrences that the Universe has to offer. For instance, the strongest undulations in spacetime are probably caused by the collision of black holes.

Other collision events are associated with the production of strong gravitational waves; for example the merger between a black hole and a neutron star, or two neutron stars colliding with each other.

But, a cosmic body doesn’t always need a partner to make waves. Stellar collapse through supernova explosion–the process that leaves behind stellar remnants like black holes and neutron stars– also causes the production of gravitational waves.

A simulation of gravitational waves emitted by a binary pulsar consisting of two neutron stars

To understand how gravitational waves are produced, it is useful to look to pulsars–binary systems of two neutron stars that emit regular pulses of electromagnetic radiation in the radio region of the spectrum.

Einstein’s theory suggests that a system such as this should be losing energy by the emission of gravitational waves. This would mean that the system’s orbital period should be decreasing in a very predictable way.

The stars draw together as there is less energy in the system to resist their mutual gravitational attraction, and as a result, their orbit increases in speed, and thus the pulses of radio waves are emitted at shorter intervals. This would mean that the time it takes for the radio wave to be directly facing our line of sight would be reduced; something we can measure.

This is exactly what was observed in the Hulse-Taylor system (PSR B1913±16), discovered in 1974, which is comprised of two rapidly rotating neutron stars. This observation earned Russell A. Hulse and Joseph H. Taylor, Jr, both of Princeton University, the 1993 Nobel Prize in Physics. The reason given by the Nobel Committee was: “for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation.”

An animation illustrating how gravitational waves are emitted by two neutron stars as they orbit each other eventually colliding (credit: NASA/Goddard Space Flight Center).

Though inarguably an impressive and important scientific achievement, this was still only indirect evidence of gravitational waves. Whilst the effect Einstein predicted of shortening of the pulsar’s spin was definitely present, this wasn’t an actual direct detection.

In fact, though not alive to witness this momentous achievement, Einstein had predicted that this would be the only way we could ever garner any hint of gravitational waves. The great physicist believed those spacetime ripples would be so faint that they would remain impossible to detect by any technological means imaginable at that time.

Fortunately, Einstein was wrong.

How do we Detect Gravitational Waves?

It should come as no surprise that actually detecting a gravitational wave requires a piece of equipment of tremendous sensitivity. Whilst the effect of gravitational waves–the squashing and stretching space itself–sounds like something that should pre-eminently visible, the degree by which this disturbance occurs is so tiny it is totally imperceptible.

Fortunately, there is a branch of physics that is pretty adept at deal with the tiny. To spot gravitational waves, researchers would use an effect called interference, something demonstrated in the most famous quantum physics experiment of all time; the double-slit experiment.

Physicists realised that a laser interferometer could be used to measure the tiny squashing and stretching of space as it would cause the arms of the equipment to shrink by a minute amount. This means when splitting a laser and sending it through the arms of an interferometer the squeezing of space caused by the passage of a gravitational wave would cause one laser to arrive slightly ahead of the other–meaning they are out of phase and causing destructive interference. Thus, this difference in arrival times causes interference that gives an indication that gravitational waves have rippled across one of the arms.

But, not just any laser interferometer would do. Physicists would need an interferometer so large that it constituents a legitimate feat in engineering. Enter the Laser Interferometer Gravitational-wave Observatory (LIGO).

Schematic showing how LIGO works. (Johan Jarnestad/The Royal Swedish Academy of Sciences)

The LIGO detector uses two laser emitters based at the Hanford and Livingstone observatories, separated by thousands of kilometres apart to form an incredibly sensitive interferometer. From these emitters, lasers are sent down the ‘arms’ of the interferometer which are actually 4km long vacuum chambers.

This results in a system that is so sensitive it can measure a deviation in spacetime that is as small as 1/10,000 the size of an atomic nucleus. To put this into an astronomical context; it is equivalent to spotting a star at a distance of 4.2 light-years and pinpointing its location to within the width of a human hair! This constitutes the smallest measurement ever practically attempted in any science experiment.

And in 2015, this painstaking operation paid off.

On 14th September 2015, the LIGO and Virgo collaboration spotted a gravitational wave signal emanating from the spiralling in and eventual merger of two black holes, one 29 times the mass of the Sun, the other 36 times our star’s mass. From changes in the signal received the scientists were also able to observe the resultant single black hole.

The signal, named GW150914, represented not just the first observation of gravitational waves, but also the first time humanity had ‘seen’ a binary stellar-mass black hole system, proving that such mergers could exist in the Universe’s current epoch.

Different Kinds of Gravitational Waves

Since the initial detection of gravitational waves, researchers have made a series of important and revelatory detections. These have allowed scientists to classify different types of gravitational waves and the objects that may produce them.


Continuous Gravitational Waves

A single spinning massive object like a neutron star is believed to cause a continuous gravitational wave signal as a result of imperfections in the spherical shape of this star. if the rate of spin remains constant, so too are the gravitational waves it emits–it is continuously the same frequency and amplitude much like a singer holding a single note. Researchers have created simulations of what an arriving continuous gravitational wave would sound like if the signal LIGO detected was converted into a sound.

The sound of a continuous gravitational wave of the kind produced by a neutron star can be heard below.

(SXS Collaboration)

Compact Binary Inspiral Gravitational Waves

All of the signals detected by LIGO thus far fit into this category as gravitational waves created by pairs of massive orbiting objects like black holes or neutron stars.

The sources fit into three distinct sub-categories:

  • Binary Black Hole (BBH)
  • Binary Neutron Star (BNS)
  • Neutron Star-Black Hole Binary (NSBH)


Each of these types of binary pairing creates its own unique pattern of gravitational waves but shares the same overall mechanism of wave-generation–inspiral generation. This process occurs over millions of years with gravitational waves carrying away energy from the system and causing the objects to spiral closer and closer until they meet. This also results in the objects moving more quickly and thus creating gravitational waves of increasing strength.

The ‘chirp’ of an eventual merger between neutron stars has been translated to sound waves and can be heard below.

Max Planck Institute for Gravitational Physics
(Albert-Einstein-Institut)

Stochastic Gravitational Waves

Small gravitational waves that even LIGO is unable to precisely pinpoint could be passing over Earth from all directions at all times. These are known as stochastic gravitational waves due to their random nature. At least part of this stochastic signal is likely to have originated in the Big Bang.

Should we eventually be able to detect this signal it would allow us to ‘see’ further back into the history of the Universe than any electromagnetic signal could, back to the epoch before photons could freely travel through space.

The simulated sound of this stochastic signal can be heard below.

(R. Williams (STScI), the Hubble Deep Field Team, NASA)

It is extremely likely given the variety of objects and events in the Universe that other types of gravitational wave signals exist. This means that the quest to detect such signals is really an exploration of the unknown. Fortunately, our capacity to explore the cosmos has been boosted tremendously by our ability to detect gravitational waves.

A New Age of Astronomy

GW150914 conformed precisely to the predictions of general relativity, confirming Einstein’s most revolutionary theory almost exactly six decades after his death in 1955. That doesn’t mean that gravitational waves are done teaching us about the Universe. In fact, these ripples in spacetime have given us a whole new way to view the cosmos.

Before the discovery of gravitational waves, astronomers were restricted to a view of the Universe painted in electromagnetic radiation and therefore our observations have been confined to that particular spectrum.

Using the electromagnetic spectrum alone, astronomers have been able to discover astronomical bodies and even the cosmic microwave background (CMB) radiation, a ‘relic’ of one of the very first events in the early universe, the recombination epoch when electrons joined with protons thus allowing photons to begin travelling rather than endlessly scattering. Therefore, the CMB is a marker of the point the universe began to be transparent to light.

Yet despite the strides traditional astronomy has allowed us to make in our understanding of the cosmos, the use of electromagnetic radiation is severely limited. It does not allow us to directly ‘see’ black holes, from which light cannot escape. Nor does it allow us to see non-baryonic, non-luminous dark matter, the predominant form of matter in galaxies–accounting for around 85% of the universe’s total mass. As the term ‘non-luminous’ suggests dark matter does not interact with the electromagnetic spectrum, it neither absorbs nor emits light. This means that observations in the electromagnetic spectrum alone will never allow us to see the majority of the matter in the universe.

Clearly, this is a problem. But one that can be avoided by using the gravitational wave spectrum as both black holes and dark matter do have considerable gravitational effects.

Gravitational waves also have another significant advantage over electromagnetic radiation.

This new form of astronomy measures the amplitude of the travelling wave, whilst electromagnetic wave astronomy measures the energy of the wave, which is proportional to the amplitude of the wave squared.

Therefore the brightness of an object in traditional astronomy is given by 1/distance² whilst ‘gravitational brightness’ falls off by just 1/distance. This means that the visibility of stars persists in gravitational waves for a much greater distance than the same factor persists in the electromagnetic spectrum.

Of course, none of this is to suggest that gravitational wave astronomy will ‘replace’ traditional electromagnetic spectrum astronomy. In fact the two are most powerful when they are unified in an exciting new discipline–multimessenger astronomy

Sources and Further Reading

Maggiore. M., Gravitational Waves: Theory and Experiments, Oxford University Press, [2019]

Maggiore. M., Gravitational Waves: Astrophysics and Cosmology, Oxford University Press, [2019]

Collins. H., Gravity’s Kiss:  The Detection of Gravitational Waves, MIT Press, [2017]

Look Deeper, LIGO, [https://www.ligo.caltech.edu/page/look-deeper]

What are Black Holes: The Journey From Theory to Reality

Black holes are cosmic bodies that pack an immense amount of mass into a surprisingly small space. Due to their extremely intense gravity, nothing can escape their grasp — not even light which defines the universe’s speed limit.

April 10th, 2019 marked a milestone in science history when the team at the Event Horizon Telescope revealed the first image of a supermassive black hole. As a result, these areas of space created when stars reach the end of their nuclear fuel burning and collapse creating massive gravitational wells, completed their transition from theory to reality.

This transition has been further solidified since with the revelation of a second, much clearer image of the supermassive black hole (SMBH) at the centre of the galaxy Messier 87 (M87). This second image revealing details such as the orientation of the magnetic fields that surround it and drive its powerful jets that extend for light-years.

(EHT Collaboration)

The study of black holes could teach us much more than about these spacetime events and the environments that home them, however. Because cosmologists believe that most galaxies have an SMBH sat at their centre, greedily consuming material like a fat spider lurking at the centre of a cosmic web, learning more about these spacetime events can also teach us how galaxies themselves evolve.

The origin of black holes is one that runs in reverse to that of most astronomical objects. We didn’t discover some mysterious object in the distant cosmos and then began to theorise about it whilst making further observations.

Rather, black holes entered the scientific lexicon in a way that is more reminiscent of newly theorised particles in particle physics; emerging first from the solutions to complex mathematics. In the case of black holes, the solutions to the field equations employed by Einstein in his most important and revolutionary theory.

Just as a physical black hole forms from the collapse of a star, the theory of black holes emerged from the metaphorical collapse of the field equations that govern the geometrical theory of gravity; better known as general relativity.

One of the most common misconceptions about black holes arises from their intrinsic uniqueness and the fact that there really isn’t anything else like them in the Universe.

That’s Warped: Black Holes and Their Effect on Spacetime

General relativity introduced the idea that mass has an effect on spacetime, a concept fundamental to the idea that space and time are not passive stages upon which the events of the universe play out. Instead, those events shape that stage. As John Wheeler brilliantly and simply told us; when it comes to general relativity:

“Matter tells space how to curve. Space tells matter how to move.”

John Wheeler

The most common analogy is for this warping of space is that of placing objects on a stretched rubber sheet. The larger the object the deeper the ‘dent’ and the more extreme the curvature it creates. In our analogy, a planet is a marble, a star an apple, and a black hole a cannonball.

Thus, considering this a black hole isn’t really ‘an object’ at all but, is actually better described as a spacetime event. When we say ‘black hole’ what we really mean is an area of space that is so ‘warped’ by a huge amount of mass condensed into a finite point that even light itself doesn’t have the necessary velocity to escape it.

This point at which light can no longer escape marks the first of two singularities that define black holes–points at which solutions of the equations of general relativity go to infinity.

The Event Horizon and the Central Singularity

The event horizon of a black hole is the point at which its escape velocity exceeds the speed of light in vacuum (c). This occurs at a radius called the Schwarzchild radius–named for astrophysicist Karl Schwarzschild, who developed a solution for Einstien’s field equations whilst serving on the Eastern Front in the First World War.

His solution to Einstein’s field equations–which would unsurprisingly become known as the Schwarzschild solution– described the spacetime geometry of an empty region of space. It had two interesting features — two singularities — one a coordinate singularity the other, a gravitational singularity. Both take on significance in the study of black holes.

Dealing with the coordinate singularity, or the Schwarzchild radius first.

The Schwarzchild radius (Rs) also takes on special meaning in cases where the radius of a body shrinks within this Schwarzschild radius (ie. Rs >r). When a body’s radius shrinks within this limit, it becomes a black hole.

All bodies have a Schwarzschild radius, but as you can see from the calculation below for a body like Earth, Rs falls well-within its radius.

That’s part of what makes black holes unique; their Schwartzchild radius is outside their physical radius because their mass is compressed into such a tiny space.

Because the outer edge of the event horizon is the last point at which light can escape it also marks the last point at which events can be seen by distant observers. Anything past this point can never be observed.

The reason the Schwarzschild radius is called a ‘coordinate singularity’ is that it can be removed with a clever choice of coordinate system. The second singularity can’t be dealt with in this way. This makes it the ‘true’ physical singularity of the black hole itself.

This is known as the gravitational singularity and is found at the centre of the black hole (r=0). This is the end-point for every particle that falls into a black hole. It’s also the point the Einstein field equations break down… maybe even all the laws of physics themselves.

The fact that the escape velocity of the event horizon exceeds the speed of light means that no physical signal could ever carry information from the central singularity to distant observers. We are forever sealed off from this aspect of black holes, which will therefore forever remain in the domain of theory.

How to Make a Black Hole

We’ve already seen that for a body with the mass of Earth to become a black hole, its diameter would have to shrink to less than 2cm. This is obviously something that just isn’t possible. In fact, not even our Sun has enough mass to end its life as a black hole. Only stars with around three times the mass of the Sun are massive enough to end their lives in this way.

But why is that the case?

It won’t surprise you to learn that for an astronomical body to become a black hole it must meet and exceed a series of limits. These limits are created by outward forces that are resisting against the inward force that leads to gravitational collapse.

For planets and other bodies with relatively small masses, the electromagnetic repulsion between atoms is strong enough to grant them stability against total gravitational collapse. For large stars the situation is different.

During the main life cycle of stars–the period of the fusion of hydrogen atoms to helium atoms–the primary protection against gravitational collapse is the outward thermal and radiation pressures that are generated by these nuclear processes. That means that the first wave of gravitational collapse occurs when a star’s hydrogen fuel is exhausted and inward pressure can no longer be resisted.

Should a star have enough mass, this collapse forces together atoms in the nucleus enough to reignite nuclear fusion— with helium atoms now fusing to create heavier elements. When this helium is exhausted, the process happens again, with the collapse again stalling if there is enough pressure to trigger the fusion of heavier elements still.

Stars like the Sun will eventually reach the point where their mass is no longer sufficient to kick start the nuclear burning of increasingly heavier elements. But if it isn’t nuclear fusion that is generating the outward forces that prevent complete collapse, what is preventing these lower-mass stars from becoming black holes?

Placing Limits on Gravitational Collapse


Lower-mass stars like the Sun will end their lives as white dwarf stars with a black hole form out of reach. The mechanism protecting these white dwarfs against complete collapse is a quantum mechanical phenomenon called degeneracy.

This ‘degeneracy pressure is a factor of the Pauli exclusion principle, which states that certain particles– known as fermions, which include electrons, protons, and neutrons– are forbidden from occupying the same ‘quantum states.’ This means that they resist being tightly crammed together.

This theory and the limitation it introduced led Indian-American astrophysicist Subrahmanyan Chandrasekhar to question if there was an upper cap at which this protection against gravitational collapse would fail.

Chandrasekhar –awarded the 1983 Nobel Prize in physics for his work concerning stellar evolution– proposed in 1931 that above 1.4 solar masses, a white dwarf would no longer be protected from gravitational collapse by degeneracy pressure. Past this limit — termed the Chandrasekhar limit — gravity overwhelms the Pauli exclusion principle and gravitational collapse can continue.

But there is another limit that prevents stars of even this greater mass from creating black holes.

Thanks to the 1932 discovery of neutrons— the neutral partner of protons in atomic nuclei — Russian theoretical physicist Lev Landau began to ponder the possible existence of neutron stars. The outer part of these stars would contain neutron-rich nuclei, whilst the inner sections would be formed from a ‘quantum fluid’ comprised of mostly neutrons

These neutron stars would also be protected against gravitational collapse by degeneracy pressure — this time provided by this neutron fluid. In addition to this, the greater mass of the neutron in comparison to the electron would allow neutron stars to reach a greater density before undergoing collapse.

By 1939, Robert Oppenheimer had calculated that the mass-limit for neutron stars would be roughly 3 times the mass of the Sun.

To put this into perspective, a white dwarf with the mass of the Sun would be expected to have a millionth of our star’s volume — giving it a radius of 5000km, roughly that of the Earth. A neutron star of a similar mass though would have a radius of about 20km — roughly the size of a city.

Above the Oppenheimer-Volkoff limit, gravitational collapse begins again. This time no limits exist between this collapse and the creation of the densest possible state in which matter can exist. The state found at the central singularity of a black hole.

We’ve covered the creation of black holes and the hurdles that stand in the way of the formation of such areas of spacetime, but theory isn’t quite ready to hand black holes over to practical observations just yet. The field equations of general relativity can also be useful in the categorisation of black holes.

The four types of black holes

Categorising black holes is actually fairly straight-forward thanks to the fact that they possess very few independent qualities. John Wheeler had a colourful way of describing this lack of characteristics. The physicist once commented that black holes ‘have no hair,’ meaning that outside a few characteristics they are essentially indistinguishable. This comment became immortalised as the no-hair theorem of black holes.

Black holes have only three independent measurable properties — mass, angular momentum and electric charge. All black holes must have mass, so this means there are only four different types of a black hole based on these qualities. Each is defined by the metric or the function used to describe it.

This means that black holes can be quite easily catagorised by the properties they possess as seen below.

This isn’t the most common or most suitable method of categorising black holes, however. As mass is the only property that is common to all black holes, the most straight-forward and natural way of listing them is by their mass. These mass categories are imperfectly defined and so far black holes in some of the categories–most notably intermediate black holes– remain undetected.

Cosmologists believe that the majority of black holes are rotating and non-charged Kerr black holes. And the study of these spacetime events reveals a phenomenon that perfectly exemplifies their power and influence on spacetime.

The Anatomy of a Kerr Black Hole

The mathematics of the Kerr metric used to describe non-charged rotating black holes reveals that as they rotate, the very fabric of spacetime that surrounds them is dragged along in the direction of the rotation.

The powerful phenomenon is known as ‘frame-dragging’ or the Lense-Thirring effect and leads to the violent churning environments that surround Kerr black holes. Recent research has revealed that this frame-dragging could be responsible for the breaking and reconnecting of magnetic field lines that in-turn, launch powerful astrophysical jets into the cosmos.

The static limit of a Kerr black hole also has an interesting physical significance. This is the point at which light–or any particle for that matter– is no-longer free to travel in any direction. Though not a light-trapping surface like the event horizon, the static limit pulls light in the direction of rotation of the black hole. Thus, light can still escape the static limit but only in a specific direction.

British theoretical physicist and 2020 Nobel Laureate Sir Roger Penrose also suggested that the static limit could be responsible for a process that could cause black holes to ‘leak’ energy into the surrounding Universe. Should a particle decay into a particle and its corresponding anti-particle at the edge of the static limit it would be possible for the latter to fall into the black hole, whilst its counterpart is launched into the surrounding Universe.

This has the net effect of reducing the black hole’s mass whilst increasing the mass content of the wider Universe.

We’ve seen what happens to light at the edge of a black hole and explored the fate of particles that fall within a Kerr black hole’s static limit, but what would happen to an astronaut that strayed too close to the edge of such a spacetime event?

Death by Spaghettification

Of course, any astronaut falling into a black hole would be completely crushed upon reaching its central gravitational singularity, but the journey may spell doom even before this point has been reached. This is thanks to the tidal forces generated by the black hole’s immense gravitational influence.

As the astronaut’s centre of mass falls towards the black hole, the object’s effect on spacetime around it causes their head and feet to arrive at significantly different times. The difference in the gravitational force at the astronaut’s head and feet gives rise to such a huge tidal force that means their body would be simultaneously compressed at the sides and stretched out.

Physicists refer to this process as spaghettification. A witty name for a pretty horrible way to die. Fortunately, we haven’t yet lost any astronauts to this bizarre demise, but astronomers have been able to watch stars meet the same fate.

For a stellar-mass black hole, spaghettification would occur not just before our astronaut reaches the central singularity, but also well before they even hit the event horizon. For a black hole 40 times the mass of our Sun — spaghettification would occur at about 1,000 km out from the event horizon, which is, itself, 120 km from the central gravitational singularity.

As well as developing the Oppenheimer-Volkoff limit, Oppenheimer also used general relativity to describe how a total gravitational collapse should appear to a distant observer. They would consider the collapse to take an infinitely long time, the process appearing to slow and freeze as the star’s surface shrinks towards the Schwarzschild radius.

An astronaut falling into a black hole would be immortalized in a similar way to a distant observer, though they themselves–could they have survived spaghettification– they would notice nothing. The passing of Rs would just seem a natural part of the fall to them despite it marking the point of no return.

Much More to Learn…

After emerging from the mathematics of general relativity at the earlier stages of the 20th Century, black holes have developed from a theoretical curiosity to the status of scientific reality. In the process, they have indelibly worked their way into our culture and lexicon.

The Event Horizon Telescope (EHT) collaboration, who produced the first ever image of a black hole released in 2019, has today a new view of the massive object at the centre of the Messier 87 (M87) galaxy: how it looks in polarised light. This is the first time astronomers have been able to measure polarisation, a signature of magnetic fields, this close to the edge of a black hole. (EHT Collaboration)
The Event Horizon Telescope (EHT) collaboration, which produced the first-ever image of a black hole released in 2019, has today a new view of the massive object at the centre of the Messier 87 (M87) galaxy: how it looks in polarised light. This is the first time astronomers have been able to measure polarisation, a signature of magnetic fields, this close to the edge of a black hole. (EHT Collaboration)

Perhaps the most exciting thing about black holes is that there is so much we don’t yet know about them. As a striking example of that, almost all the information listed above resulted just from theory and the interrogation of the maths of Einstein’s field equations.

Unlocking the secrets held by black holes could, in turn, reveal how galaxies evolve and how the Universe itself has changed since its early epochs.

Sources and Further Reading

Relativity, Gravitation and Cosmology, Robert J. Lambourne, Cambridge Press, [2010].

Relativity, Gravitation and Cosmology: A basic introduction, Ta-Pei Cheng, Oxford University Press, [2005].

Extreme Environment Astrophysics, Ulrich Kolb, Cambridge Press, [2010].

Stellar Evolution and Nucleosynthesis, Sean G. Ryan, Andrew J. Norton, Cambridge Press, [2010].

Cosmology, Matts Roos, Wiley Publishing, [2003].

Using ALMA astronomers have revealed an extremely distant galaxy that looks surprisingly like our Milky Way. The galaxy, SPT0418-47, is gravitationally lensed by a nearby galaxy, appearing in the sky as a near-perfect ring of light. (ALMA (ESO/NAOJ/NRAO), Rizzo et al.)

Distant ‘Milky Way Look-Alike’ Challenges Theories of Galaxy Formation

Using the phenomenon of gravitational lensing astronomers have examined an extremely distant galaxy that shares many features with the Milky Way. The discovery of a calm galaxy so early in the Universe’s history calls into question our theories of how galaxies form. 

Using ALMA astronomers have revealed an extremely distant galaxy that looks surprisingly like our Milky Way. The galaxy, SPT0418-47, is gravitationally lensed by a nearby galaxy, appearing in the sky as a near-perfect ring of light. (ALMA (ESO/NAOJ/NRAO), Rizzo et al.)
Astronomers using ALMA, in which the ESO is a partner, have revealed an extremely distant galaxy that looks surprisingly like our Milky Way. The galaxy, SPT0418-47, is gravitationally lensed by a nearby galaxy, appearing in the sky as a near-perfect ring of light.
(ALMA (ESO/NAOJ/NRAO), Rizzo et al.)

Astronomers have discovered that a distant young galaxy that existed in the very early universe shares some surprising similarities with our galaxy. The fact that the young galaxy named SPT-S J041839–4751.9 or SPT0418–47 for short — located 12 billion light-years from Earth — resembles the Milky Way and the galaxies that surround it presents something of a problem. Galaxies that existed 1.4 billion years after the Big Bang, weren’t supposed to be so calm, unchaotic, and well-formed.

Thus the discovery of this throws many of our theories of galactic evolution into question. In fact, this finding fits into a series of recent discoveries that suggest galaxies began forming much earlier in the Universe’s history than previously believed. 

The research team reconstructed the distant galaxy’s true shape, shown here, and the motion of its gas from the ALMA data using a new computer modelling technique. 
(ALMA (ESO/NAOJ/NRAO), Rizzo et al.)

“This result represents a breakthrough in the field of galaxy formation, showing that the structures that we observe in nearby spiral galaxies and in our Milky Way were already in place 12 billion years ago,” says Francesca Rizzo, a PhD student from the Max Planck Institute for Astrophysics in Germany, and the lead author of a paper detailing the findings published today in the journal Nature

Whilst the observation of this distant galaxy would not have been possible without the impressive technology of the ESO’s Atacama Large Millimeter/submillimeter Array (ALMA) located in the Chilean Andes, it also hinged on the invention of another galaxy, and an extraordinary feature of Einstein’s theory of general relativity. The team reconstructed the accurate image of SPT0418–47 from the ring-like image received by ALMA as a result of gravitational lensing by an intervening galaxy. 

“We have studied in great detail a very distant galaxy. This means going back in time and we see this galaxy when it was very young, 1.4 billion years after the Big Bang,” Rizzo’s co-author, Filippo Fraternali, from the Kapteyn Astronomical Institute, the University of Groningen, Netherlands, tells ZME Science referring to the fact that the light from SPT0418–47 has travelled 12 billion years to reach us.

“Given that galaxies cannot form right after the Big Bang, we can estimate that SPT0418–47 [as we see it] is about 1-billion-years old.”

A Distant Milky Way Doppelganger With Some Key Differences

SPT0418–47 possesses a central bulge and a rotating disc, two features also displayed by the Milky Way and other local galaxies. However, it lacks the Milky Way’s spiral arms and is also much smaller than our home galaxy. This is the first time that astronomers have spotted a central bulge — stars tightly clustered around the galactic centre — in such a distant, and therefore early, galaxy. 

However, Fraternali notes that just because SPT0418–47 resembles the Milky Way at the stage we see it at, that doesn’t mean it evolved just as our galaxy did. “It is important to remark that whilst SPT0418–47 is similar to the Milky Way now, it does not mean that 12 billion years ago the Milky Way looked like SPT0418–47,” the researcher adds.

“In fact, we think that SPT0418–47 will evolve into a galaxy very different from the Milky Way, an elliptical galaxy, much more massive and without gas.”

How Astronomers Reconstructed SPT0418-47 (ALMA (NRAO/ESO/NAOJ)/Martin Kornmesser (ESO)/ Robert Lea)
How Astronomers Reconstructed SPT0418-47 (ALMA (NRAO/ESO/NAOJ)/Martin Kornmesser (ESO)/ Robert Lea)

Another key difference between the two galaxies is that SPT0418–47 is forming stars much more rapidly, unusual for a rotating disk. “SPT-S J041839–4751.9 belongs to a particular population of galaxies that are known as dusty star-forming galaxies,” Simona Vegetti, another co-author on the paper and an expert in gravitational lensing from the Max Planck Institute for Astrophysics, tells ZME Science. “As the name suggests, these are galaxies that are undergoing a significant burst of high-rate star formation.”

Vegetti goes on to explain that astronomers believe that as they age, galaxies like SPT0418-47 will turn into what is referred to as early-type galaxies — a galaxy which has consumed most of its gas and is not forming stars anymore.

“By comparing the properties of SPT-S J041839–4751.9 with those of nearby early-type galaxies, we can learn something about the processes which are responsible for the transformation from one galaxy type to the other,” shes says. “It’s a bit like comparing the properties of young and old people, it gives us some hints on the ageing process.”

But the most puzzling aspect of the distant galaxy is how calm and ordered it appears. Something current cosmological models cannot account for. 

Young and Chaotic? 

Our current cosmological models suggest that the Universe that SPT0418–47 as we see it inhabited was a chaotic and turbulent place. And galaxies found during this epoch are expected to reflect these qualities, even if they do possess some structure, this should be washed out by the violent conditions around them. 

“The general idea was that galaxies at those distances/times were extremely chaotic and one would barely recognise a disc in formation in amongst massive filaments of infalling gas and powerful explosions due to the extremely intense star formation,” says Fraternali. 

Galaxies in the early universe are expected to be the site of powerful phenomena like supernova explosions which release a lot of energy Vegetti explains, adding: “We would expect SPT-S J041839–4751.9 to be very turbulent, or in other words, we expect the motion of gas in this galaxy to move chaotically in winds and outflows.”

But the team’s observations reveal a completely different picture. What they actually found was that the motion of the gas in SPT0418–47 is, in fact, rotating around the centre of the galaxy quietly and in a well-ordered fashion. As Vegetti notes: “It is very hard to explain this behaviour within the context of the latest state-of-the-art numerical simulations of galaxies.”

ALMA (ESO/NAOJ/NRAO), Rizzo et al.

One of the man questions that remain for Fraternali is how common are these features and the relatively ‘calmness’ of SPT0418–47 in other older galaxies? “Because the galaxy has not been selected by us — it was, by chance, perfectly aligned with the lens along the line of sight — we may argue that it could be representative of a large fraction of massive galaxies at that time.”

Thus, staring back in time to conduct further investigation of these distant stars is of vital importance. But, that, as you may imagine, is no easy task. In fact, the study of SPT0418–47, as Fraternali indicates, was only made possible by the intervention of another galaxy coming between it and us, and the ensuing remarkable phenomena of gravitational lensing. 

Galaxies as Lenses — the Power of Gravitational Lensing

The exact alignment of SPT0418–47 and an intervening galaxy means that it appears as a near-perfect ring to the team at ALMA — a structure referred to by astronomers as an ‘Einstein ring’ by astronomers due to its connection to the theory of general relativity — the geometrical theory of gravity put forward by Einstein in the early years of the 20th Century. 

Gravitational lensing hinges on the fact that objects with mass curve the fabric of spacetime around them. The greater the mass, the more extreme the curvature. The most common analogy used to describe this is a stretched rubber-sheet having objects of increasing mass placed on it. A bowling ball creating a greater ‘dent’ on the sheet than a marble or a tennis ball. 

This means that an object like a galaxy with tremendous mass curves the path of light travelling past it, often this results in an object behind the lens appearing to be located in a different place. In extreme cases, creating an ‘Einstein Ring’ built up of light that took different curved paths around the intervening galaxy and thus arrived at Earth at slightly different times. But, isn’t just a beautiful and curious phenomenon of gravity, it’s also a powerful observational tool.  

ight from a distant galaxy is distorted by the gravitational effects of a foreground galaxy, which acts like a lens and makes the distant source appear distorted, but magnified, forming characteristic rings of light, known as Einstein rings. This effect has allowed astronomers to see the distant galaxy SPT0418-47 (which appears as a golden ring in the ALMA images) in finer detail than would have been possible otherwise. The foreground galaxy is not visible in the ALMA images of SPT0418-47 because it is too faint at the wavelengths used. The blue colour used in this schematic to represent this foreground galaxy is artificial. Credit: ALMA (NRAO/ESO/NAOJ)/Luis Calçada (ESO)
Light from a distant galaxy is distorted by the gravitational effects of a foreground galaxy, which acts like a lens and makes the distant source appear distorted, but magnified, forming characteristic rings of light, known as Einstein rings. This effect has allowed astronomers to see the distant galaxy SPT0418-47 (which appears as a golden ring in the ALMA images) in finer detail than would have been possible otherwise. The foreground galaxy is not visible in the ALMA images of SPT0418-47 because it is too faint at the wavelengths used. The blue colour used in this schematic to represent this foreground galaxy is artificial. Credit: ALMA (NRAO/ESO/NAOJ)/Luis Calçada (ESO)

“Because these galaxies are very far, it is challenging to study them in great detail using current telescopes, they are not powerful enough,” Vegetti says. “Our team then uses the effect of strong gravitational lensing to overcome this limitation.”

The process used by the team first involves the search for a pair of galaxies that are far away from each other but appear aligned from our vantage point here on Earth. “The galaxy closer to us will then behave like a lens providing us with a magnified view of the more distant galaxy,” Vegetti elaborates. “It’s like observing through a much more powerful telescope. 

“When we started studying this object we had no idea of what we were going to find. There are almost no other studies of galaxies so young at such a level of detail.”

Vegetti explains that the next generation of telescopes such as the James Webb Space Telescope and the ESO’s Extremely Large Telescope (ELT) should allow for the study of SPT0418–47 galactic contemporaries in much greater detail. This will allow researchers to discover just how common these features are, and in turn, possibly spark a rethink of how early well-ordered galaxies could form in the Universe’s history. She also reserves special praise for this study’s lead author.

“These new facilities will bring this type of analysis to the next level, allowing us to observe even younger galaxies with an even greater level of detail,” Vegetti concludes. “Francesca Rizzo is leading the way in this line of research. She is a brilliant young scientist with whom I enjoy working, so I am looking forward to our next discovery!”

Source

Rizzo. F., Vegetti. S., Powell. D., Fraternali. F., et al, ‘A dynamically cold disk galaxy in the early Universe,’ Nature, [2020].

Einstein’s General Relativity passes the test at the centre of our Galaxy

Measurements of a star passing close to the supermassive black hole at the centre of the Milky Way confirms the predictions of Einstein’s theory of general relativity in a high gravity environment.

An artist visualization of the star S0–2 as it passes by the supermassive black hole at the Galactic centre. As the star gets closer to the supermassive black hole, light it emits experiences a gravitational redshift that is predicted by Einstein's General Relativity. By observing this redshift, we can test Einstein's theory of gravity (Nicole R. Fuller, National Science Foundation)

An artist visualization of the star S0–2 as it passes by the supermassive black hole at the Galactic centre. As the star gets closer to the supermassive black hole, light it emits experiences a gravitational redshift that is predicted by Einstein’s General Relativity. By observing this redshift, we can test Einstein’s theory of gravity (Nicole R. Fuller, National Science Foundation)

A detailed study of a star orbiting the supermassive black hole at the centre of our Galaxy, reveals that Einstein’s theory of general relativity is accurate in its description of the behaviour of light struggling to escape the gravity around this massive space-time event.

The analysis — conducted by Tuan Do, Andrea Ghez and colleagues — involved detecting the gravitational redshift in the light emitted by a star closely orbiting the supermassive black hole known as Sagittarius A*. The redshift was measured as the star reached the closest point in its orbit — which has a duration of 16 years — to the black hole.

Lasers from the two Keck Telescopes propagated in the direction of the Galactic centre. Each laser creates an artificial star that can be used to correct for the blurring due to the Earth’s atmosphere. (Ethan Tweedie) 

Lasers from the two Keck Telescopes propagated in the direction of the Galactic centre. Each laser creates an artificial star that can be used to correct for the blurring due to the Earth’s atmosphere. (Ethan Tweedie)

The team found that the star experienced gravitational redshift — which occurs when light is stretched to longer wavelengths and towards the red ‘end’ of the electromagnetic spectrum by the effect of gravity — as it gets closer to the black hole,  conforming to Einstein’s theory of general relativity and its predictions regarding gravity.

At the same time, the results defy predictions made by the Newtonian theory, which has no explanation for gravitational redshift.

Ghez says: “(The findings are) a transformational change in our understanding about not only the existence of supermassive black holes but the physics and astrophysics of black holes.”

The major difference between general relativity and the Newtonian calculation of gravity is, that whereas Newton envisioned gravity as a force acting between physical objects, Einstein’s theory saw gravity as a geometric phenomenon.

The presence of mass ‘curves’ space it occupies. Physical objects, including light, must then follow this curvature. As John Wheeler infamously put it: “matter tells space how to curve, space tells matter how to move.”

Testing relativity in regions of high gravity

Image of the orbits of stars around the supermassive black hole at the centre of our galaxy. Highlighted is the orbit of the star S0–2. This is the first star that has enough measurements to test Einstein’s General Relativity around a supermassive black hole. [Credit: Keck/UCLA Galactic Center Group]

Image of the orbits of stars around the supermassive black hole at the centre of our galaxy. Highlighted is the orbit of the star S0–2. This is the first star that has enough measurements to test Einstein’s General Relativity around a supermassive black hole. [Credit: Keck/UCLA Galactic Center Group]

The new research resembles an analysis conducted last year by the GRAVITY collaboration, except in this new expanded analysis, the team report novel spectra data.

Although general relativity has been thoroughly tested in relatively weak gravitational fields — such as those on Earth and in the Solar System—before last year, it had not been tested around a black hole as big as the one at the centre of the Milky Way.

Observations of the stars rapidly orbiting Sagittarius A *provide a method for general relativity to be evaluated in an extreme gravitational environment.

Do explains why these kind of tests are important:

“We need to test GR in extreme environments because that’s where we think the theory might break down.”

“If we can see which predictions from general relativity have deviations, that gives us clues as to how to build a better model of gravity.”

A figure showing the challenges the Ghez team had in processing decades of image data and spectroscopy input to follow the star S0–2. (Zina Deretsky, National Science Foundation)

A figure showing the challenges the Ghez team had in processing decades of image data and spectroscopy input to follow the star S0–2. (Zina Deretsky, National Science Foundation)

To obtain their results, the team analyzed new observations of the star S0–2 as it made its closest approach to the enormous black hole in 2018. They then combined this data with measurements Ghez and her team have made over the last 24 years.

The team has many avenues of investigations available to them from here, Tuan tells me.

He continues: “Two of them I’m excited about are testing space-time around the black hole by looking at the orbit of the star S0–2.”

“GR predicts that the orbit should precess, or rotate, meaning that it won’t come back where it started.”

The team should also be able to start using more stars other than S0–2 for these tests as the time baseline of observations increase and technology improves

Do concludes: “ These measurements open a new era of GR tests at the Galactic centre so it’s very exciting.”


This research appears in the 26 July 2019 issue of Science.

Credit: NIST.

New atomic clocks could measure distortions in space-time itself

Scientists have made optical atomic clocks that ‘tick’ a quadrillion times a second, making them accurate enough to potentially measure the gravitational distortion of space-time across the Earth’s surface more precisely than current methods. In the future, this sort of atomic ticker could be used to detect gravitational waves, test general relativity, and even search for dark matter.

Credit: NIST.

Credit: NIST.

The flow of time is not absolute — it is relative, as we’ve come to know thanks to Einstein’s work. When you’re having fun, times flies in a breeze and, conversely, when we’re faced with a daunting task, it seems to take forever. But this is merely our subjectivity playing tricks on us. What’s more remarkable is that even seemingly objective measures of time, such as the swing of a finely-tuned pendulum, can be relative. For instance, a clock placed on Mt. Everest will tick slightly faster than the same clock at sea level due to the effects of the gravity potential.

In order to compare and sync clocks at different points in a gravity field, we’re forced to establish a common reference surface. For planet Earth, this is the geoid — the surface of equal gravitational potential representing the global-mean sea level. Today, the geoid is determined by altimetry measurements performed by satellites and physical models of the planet’s gravity. Both approaches have limitations that introduce uncertainties of several centimeters. With atomic clocks, these imprecisions could become minimal.

Physicists at the National Institute of Standards and Technology (NIST) recently demonstrated one such device — an optical atomic clock that traps a thousand ytterbium atoms in optical lattices (grids made of laser beams). An analog clock measures a second as the complete oscillation of a pendulum, for instance. An atomic clock is not all that different in principle, vibrating between two energy levels to produce a ‘tick’. According to findings published in the journal Naturethe authors were able to set three records in systematic uncertainty (how well the clock represents natural vibrations), stability (how much the clock’s frequency changes), and reproducibility (how closely two atomic clocks tick at the same frequency).

The atomic clocks, which are the size of a tabletop, matched the natural frequency to within a possible error of just one billionth of a billionth. A clock pair had a frequency difference below 10-18  and the frequency change over a specific time interval was only  3.2 x 10-19, over a day. For such a clock to lose a second it would take longer than the age of the universe, currently estimated at 13.8 billion years.

The ytterbium clocks could one-day measure how Earth’s gravity slows time, thus offering a way to pinpoint the clock’s location in the planet’s gravitational field to within a centimeter. The researchers plan on performing a test with clocks in two separate locations in order to determine their accuracy.

Among its many applications, the new atomic clocks could be used to detect ripples in spacetime called gravitational waves or even in the hunt for dark matter — the elusive form of matter that our instruments cannot detect but which scientists are almost certain it exists due to the gravity it exerts throughout the universe. The ytterbium clocks could also be used for the future redefinition of the second — the international unit of time. The clock records meet one of the international redefinition roadmap’s requirements, a 100-fold improvement in validated accuracy over the best clocks based on the current standard, the cesium atom.

Gravitational waves rumor sends ripples through the science community

Tantalizing rumors about gravitational waves have been spreading through the scientific community after Arizona State University cosmologist, Lawrence Krauss sparked a firestorm on Twitter.

Artistic depiction of gravitational waves. Image via Wiki Commons.

Gravitational waves are ripples in the curvature of spacetime which propagate as waves. They were predicted by Albert Einstein as part of his General Relativity Theory (GR). Basically, in GR, mass curves spacetime, and gravity is an effect of that curvature and therefore it must propagate through waves.

Various gravitational-wave detectors are currently under construction or are in operation but so far, no one has managed to detect them, despite an erroneous claim from the Harvard–Smithsonian Center for Astrophysics in 2014. Most notably, the Laser Interferometer Gravitational-Wave Observatory (LIGO) has been searching for these gravitational waves since 2002 with no major success. But now, that may change.

It all started (how else?) on Twitter. Reputable cosmologist Lawrence Krauss tweeted that LIGO may have found the elusive waves at last:


Normally, we wouldn’t care that much about something shared on Twitter but Lawrence Krauss is an award-winning physicist and a respected science communicator and advocate. He’s not a cook or a fraud – if anything, he’s one of the most reliable science communicators out there. But there are some issues with this.

First of all, a spokeswoman for the LIGO collaboration, Gabriela Gonzalez, said there is no announcement to be made.

“The LIGO instruments are still taking data today, and it takes us time to analyze, interpret and review results, so we don’t have any results to share yet,” said Gonzalez, professor of physics and astronomy at Louisiana State University.

“We take pride in reviewing our results carefully before submitting them for publication — and for important results, we plan to ask for our papers to be peer-reviewed before we announce the results — that takes time too!”

Secondly, even if there is a major discovery – and make no mistake, gravitational waves would be a major discovery – it’s probably not Krauss’ place to announce it, no matter who his source is (because he’s not directly working at LIGO). I mean, LIGO is a carefully thought out experiment and it’s been carried out with maximum care, so it just doesn’t seem fair to spark spirits like that from the outside. Many others have taken to Twitter to express their frustration as well, but I guess we’ll just have to wait and see if there is any foundation to this announcement or not. I wouldn’t count my gravitational chicken until something official is announced though.

The discovery of gravitational waves would further establish the theory of General Relativity, and help us bridge the gap between GR and quantum physics, who just can’t seem to get along.

galileo pisa

Dropping weights in space to test Einstein’s general relativity

Extraordinaire experimental physicist  Galileo Galilei allegedly climbed hundreds of step to reach the top of the Leaning Tower of Pisa’s – which wasn’t so leaned as it is today – and dropped  pairs of balls of different weights and materials onto the ground. The experiment was meant to prove in front of the crowd of scholars and students gathered in front of the tower that regardless of an object’s mass, whether it’s wood or lead, all objects fall with the same acceleration. If there were no friction, a feather and a cannon ball would reach the ground at the same time. It’s unclear if the whole story is merely a legend or not, but needless to say it’s an inspiring anecdote. Now, Galileo’s experiment will be adapted in ways the great classical physicist could never have imagined, as the ultimate test for one of Einstein’s general relativity caveats.

galileo pisa

Image: North Country Public Radio

Called the Drag-Compensated Micro-Satellite for the Observation of the Equivalence Principle (MicroSCOPE), the experiment will contain two free-floating weights of different materials and will monitor whether one feels a stronger tug from Earth’s gravity than the other. If this were to happen, it would violate the mass equivalence principle which posits inertial mass and gravitational mass are absolutely one of the same time, independent of material composition or mass. The mass equivalence principle is a key assumption made by Einstein to draft his theory of general relativity which states acceleration and gravity are essentially the same thing.

One mass

There are actually several types of mass. The kind that most corresponds to our intuitive sense of mass is inertial mass which describes resistance to acceleration. If you push two objects of different inertial masses with the same force, the one with the less inertial mass will accelerate more. A two tonne truck has more resistance than a wheel chair. Another type of mass is known as gravitational mass. Gravitational mass is what (in Newton’s gravity) causes the gravitational attraction between objects. When you step on a scale in the morning, you are measuring your gravitational mass. The third type of mass is known as relativistic mass. This stems from Einstein’s theory of special relativity and the equivalence of mass and energy (the famous E equals m c squared). In that famous equation, E is the energy of a particle, and c is the speed of light. So if you divide the energy of a particle by the speed of light squared, you get a “mass”, known as the relativistic mass of the particle.

MicroSCOPE satellite

MicroSCOPE satellite. Image: CNES/DAVID DUCROSS, 2012

General relativity isn’t completely reconciled with quantum mechanics – the physics of the small scale. Basically, some observed phenomena in quantum mechanics couldn’t be explained by the mass equivalence principle. The team behind MicroSCOPE, thus, want to test mass equivalence with unprecedented precision because even a minute variation between the two masses would mean that the equivalence principle does not apply in all cases.  Spotting a violation would definitely mean that there is some sort of physics beyond Einstein’s theory. This might help physicists make a breakthrough. Otherwise, it could prove equally useful since physicists can finally stop worrying about whether or not the mass equivalence is true or not.

Of course, the mass equivalence has gone through countless tests and experiments – not one proved a violation. The most precise experiment to date was made by Eric Adelberger, a physicist at the University of Washington, Seattle, and colleagues in the Eöt-Wash Group, named after 1800s Hungarian physicist Loránd Eötvös who pioneered the method used by the group. According to Science author Adrian Cho:

“Eötvös used a small dumbbell of weights of different materials suspended horizontally from a thin fiber. Gravity pulls each weight toward the center of Earth. But Earth also spins, so the inertia of the weights creates a tiny centrifugal force that flings them away from the planet’s axis. The sum of the two forces, which align only at the equator, defines the direction “down” for each weight. If the equivalence principle holds, then the centrifugal force on each weight is locked into proportion to the gravitational one, so down is the same for both weights. Then, the dumbbell will rest pointing in any direction.

But if inertial and gravitational mass are different, then the flinging will affect the weights differently and the net force on each one will point in a slightly different direction. “If the equivalence principle is violated, then every material has its own down,” Adelberger says. That difference would cause the dumbbell to twist toward a particular orientation. In 1889, Eötvös saw no such sign and confirmed the equivalence principle to one part in 20 million.”

Of course, today the experiment is a lot more refined. Eöt-Wash researchers have been constantly tweaking the method for the past 25 years. Their current rig consists not of a dumbbell but of a nearly cylindrical shell studded on either side with weights of different materials. Likewise, instead of being based on a static twist, the whole rig rotates. The scientists then just have to look for periodic twisting of the cylinder. Using beryllium and titanium, they found gravitational and inertial mass equal to one part in 10 trillion, as they reported in Physical Review Letters in 2008. The MicroSCOPE will test the equivalence principle to one part in a quadrillion.

The MicroSCOPE satellite will host two cylindrical shells inside: one the size of a toilet paper roll and made of titanium and a smaller one inside it made of platinum-rhodium. If the equivalence principle holds, both will glide on precisely the same orbit. If not, one should slip Earth-ward relative to the other.

According to models made by the MicroSCOPE researchers, the probe has a chance of seeing a strong signal, meaning it might show a violation of the mass equivalence principle. But nothing’s certain until the €200 million mission will reach Earth’s orbit in April 2016 – and not even then.

 

New study suggests Big Bang never occurred, Universe existed forever

Researchers have created a new model that applies our latest understanding of quantum mechanics to Einstein’s theory of general relativity and this is what they came up with – it’s truly hard to wrap your mind around that.

Currently accepted theories state that the Universe is around 13.8 billion years old, and before that everything in existence was squished into a tiny point – also known as the singularity – so incredibly compact that it contained everything that eventually became the Universe (actually, this is pretty hard to wrap your mind as well). As the Big Bang took place, the Universe started to expand, and it is expanding faster and faster to this day.

Image via AMNH.

The problem with current theories is that the math breaks down when you start to analyze what happened during or before the Big Bang.

“The Big Bang singularity is the most serious problem of general relativity because the laws of physics appear to break down there,” co-creator of the new model, Ahmed Farag Ali from Benha University and the Zewail City of Science and Technology, both in Egypt, told Lisa Zyga from Phys.org.

Working in a team which included Sauya Das at the University of Lethbridge in Alberta, he managed to create a new satisfying model in which the Big Bang never occurred, and the Universe simply existed forever.

“In cosmological terms, the scientists explain that the quantum corrections can be thought of as a cosmological constant term (without the need for dark energy) and a radiation term. These terms keep the Universe at a finite size, and therefore give it an infinite age. The terms also make predictions that agree closely with current observations of the cosmological constant and density of the Universe.”

According to this model, the Universe also has no end, which is perhaps even more interesting if you think about it, and that it is filled with a quantum fluid, which might be composed of gravitons – hypothetical particles that have no mass and mediate the force of gravity.

The model shows great promise, but it has to be said – it’s only a mathematical theory at this point. We don’t have the physics to back it up or prove it wrong at the moment, and we likely won’t have it in the near future. Still, it’s remarkable that it solves so many problems at once, and the conclusions are very intriguing.

“It is satisfying to note that such straightforward corrections can potentially resolve so many issues at once,” Das told Zyga.

Read the full study here.

Einstein’s theory passes tough test

Two studies put Einstein’s theory, the General Theory of Relativity to a test unlike any other before. The two teams used extensive observations from NASA’s Chandra X-ray Observatory to analyze galaxy clusters, the biggest objects in the Universe that are bound together by gravity (at least, that we know of). The first team produced results that dramaticaly “weaken” a competitor theory, while ther shows that Einstein’s theory works over a vast range of times and distances. Two thumbs up.

“If General Relativity were the heavyweight boxing champion, this other theory [“f(R) gravity”] was hoping to be the upstart contender,” said Fabian Schmidt of the California Institute of Technology in Pasadena, who led the study. “Our work shows that the chances of its upsetting the champ are very slim”

albert-einstein

Well if General Relativity were a heavyweight boxing champion, it would definitely be Cassius Clay. The point of the rival theory was to explaion why the Universe expands faster and faster. In the f(R) gravity theory, the cosmic expansion acceleration comes not from a form of energy, but rather from a modification of the gravitational force. The modification of the force also affects the rate at which small cosmic objects can grow over huge periods of time, thus opening the possibility of testing the theory with galaxy clusters observations.

What they found was that gravity is not different for distances of even 130 million light years.

“This is the strongest ever constraint set on an alternative to General Relativity on such large distance scales,” said Schmidt. “Our results show that we can probe gravity stringently on cosmological scales by using observations of galaxy clusters.”

The second study also tested the theory across cosmological periods and distances. The results fit General Relativity exactly.

“Einstein’s theory succeeds again, this time in calculating how many massive clusters have formed under gravity’s pull over the last five billion years,” said David Rapetti of the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University and SLAC National Accelerator Laboratory, who led the new study. “Excitingly and reassuringly, our results are the most robust consistency test of General Relativity yet carried out on cosmological scales.”

However, this doesn’t solve the problem of the Universe expanding at an accelerated speed. It did eliminate an inaccurate theory, though. The matter, still, remains a mystery.

“Cosmic acceleration represents a great challenge to our modern understanding of physics,” said Rapetti’s co-author Adam Mantz of NASA’s Goddard Space Flight Center in Maryland. “Measurements of acceleration have highlighted how little we know about gravity at cosmic scales, but we’re now starting to push back our ignorance.”