Tag Archives: boson

Credit: CERN.

Scientists confirm that Higgs boson is coupled to bulky cousin in new physics breakthrough

Credit: CERN.

Credit: CERN.

When scientists operating the world’s most powerful particle accelerator confirmed the existence of the Higgs boson, the discovery was heralded as a landmark achievement in particle physics. This boson is a pretty big deal — it’s the particle associated with a quantum field that is supposed to give particles their masses. Without this field, there would be no atoms, there would be no matter, there would be no us. With the Higgs boson confirmed, physicists performed the most important validation yet of the Standard Model — the theoretical framework for our current understanding of the fundamental particles and forces of nature.

However, the 2013 achievement did not answer all our questions relating to the Higgs field and how the Higgs boson behaves. But there is progress, and according to a recent statement released by the European Organization for Nuclear Research (CERN), the scientific organization that operates the LHC, a new experiment is filling in the blanks by revealing how the Higgs particle fits into the delicate ecosystem of particles.

“We know that the Higgs interacts with massive force-carrying particles, like the W boson, because that’s how we originally discovered it,” said scientist Patty McBride from the U.S. Department of Energy’s Fermi National Accelerator Laboratory, which supports the research of hundreds of U.S. scientists on the Compact Muon Solenoid (CMS) experiment.

“Now we’re trying to understand its relationship with fermions.”

There are two types of elementary particles — that is, particles that either doesn’t have a substructure or have one we haven’t discovered yet. These particles are split up into categories, two of which being fermions and bosons. Fermions follow Fermi–Dirac statistic and bosons follow Bose-Einstein statistic. Another way to look at this is that fermions are particles that have half-integer spin, whereas bosons are particles with integer spin.

The electron is a fermion, for instance. Bosons, such as the photon, carry energy — they’re the physical manifestation of forces that glue fermions together.

Earlier in 2014, researchers working with the CMS experiment showed that the Higgs boson has a relationship with fermions by measuring the rate at which they decay into tau leptons — the heavier cousin of the electron. Later, evidence surfaced of the Higgs boson decaying into bottom quarks.

Now, two experiments — the Compact Muon Solenoid (CMS) and A Toroidal LHC Apparatus (ATLAS) — found that there’s also a relationship between the Higgs and the top quark (discovered in 1995), the latter being three million times more massive than an electron.

“The relationship between the Higgs and the top quark is particularly interesting because the top quark is the most massive particle ever discovered,” McBride said. “As the ‘giver of mass,’ the Higgs boson should be enormously fond of the top quark.”

The new experiments confirm theoretical predictions, finding that in very rare situations Higgs bosons are produced simultaneously with top quarks. In yet another experiment that confirms the Standard Model, the results have a statistical significance of 5.2 sigma, which is above the 5 sigma threshold physicists require. In other words, there’s just a 1-in-3.5-million chance that the observations scientists recorded were due to random chance.

“Higgs boson production is rare – but Higgs production with top quarks is rarest of them all, amounting to only about 1 percent of the Higgs boson events produced at the LHC,” said Chris Neu, a physicist at the University of Virginia who worked on this analysis.

“A top quark decays almost exclusively into a bottom quark and a W boson,” Neu said. “The Higgs boson, on the other hand, has a rich spectrum of decay modes, including decays to pairs of bottom quarks, W bosons, tau leptons, photons and several others. This leads to a wide variety of signatures in events with two top quarks and a Higgs boson. We pursued each of these and combined the results to produce our final analysis.”

The results published in the journal Physical Review Letters will help physicists learn more about the behavior of the Higgs boson and how it might also interact with other particles we haven’t discovered yet, like dark matter. It’s remarkable how much particle physics has progressed in the last two decades. At the end of 2018, the LHC will shut down for two years for refurbishment and upgrades and then return better than ever, operating without delays through 2030.

Who knows what kind of achievements await thereafter?

Physics discover the most exciting form of matter: Excitonium

Researchers from the University of Illinois made a discovery that left the scientific world positively excited. They discovered a new form of matter postulated over 50 years ago, consisting of a boson, a composite material that can allow it to act as a superfluid, superconductor, and an insulating electronic crystal. If that sounds bizarre… well, it kind of is.

Artist’s depiction of the collective excitons of an excitonic solid. These excitations can be thought of as propagating domain walls (yellow) in an otherwise ordered solid exciton background (blue). Image courtesy of Peter Abbamonte, U. of I. Department of Physics and Frederick Seitz Materials Research Laboratory.

The more you dive into the world of particle physics, the stranger things get. The laws of physics themselves start to change if you go down to a small enough scale, with quantum mechanics taking over the more familiar laws of macroscopic physics. A form of matter called a Bose-Einstein condensate (BEC) somewhat bridges the gap between the two. BECs are basically a state of matter in which extremely cold atoms clump up together and behave as a single entity, called a boson. Photons, for instance, are a type of boson, as are some more complex quasiparticles such as plasmons, and phonons.

Excitonium is a type of a condensate made up of excitons — a type of quasiparticles formed in a quantum mechanical pairing from an escaped electron and the hole it left behind. It all starts with a semiconductor, a material with electrical properties somewhere in the middle, between those of a conductor and an insulator. Basically, when an electron on the edge of a semiconductor’s valence band gets excited, it moves on to the conduction side, which is empty. Since all electrons have a negative charge, this leaves behind a “hole” in the valence band, which acts as a positively charged entity. The negative electron and the positive hole are drawn to each other, forming a type of boson called an exciton. The fact that the hole acts as a particle itself can be attributed to the surrounding crowd of electrons. But that understanding makes the pairing no less strange and wonderful, researchers say.

Excitonium was first proposed half a century ago and was hotly debated by particle physicists. But now, researchers have finally managed to prove its existence and create it. When a largely theoretical particle is proven to also physically exist, the result can only be, well, exciting.

“Ever since the term ‘excitonium’ was coined in the 1960s by Harvard theoretical physicist Bert Halperin, physicists have sought to demonstrate its existence,” says Peter Abbamonte, lead researcher on the new study. “Theorists have debated whether it would be an insulator, a perfect conductor, or a superfluid – with some convincing arguments on all sides. Since the 1970s, many experimentalists have published evidence of the existence of excitonium, but their findings weren’t definitive proof and could equally have been explained by a conventional structural phase transition.”

U of I Professor of Physics Peter Abbamonte (center) works with graduate students Anshul Kogar (right) and Mindy Rak (left) in his laboratory at the Frederick Seitz Materials Research Laboratory. Photo by L. Brian Stauffer, University of Illinois at Urbana-Champaign.

The finding could have important ramifications. Excitonium exhibits macroscopic properties of a superconductor, or superfluid, or insulating electronic crystal. These properties make the finding significant not only from a scientific point of view but also from a practical one. It’s not clear yet what the applications of excitonium could be, but it exhibits some enviable properties. Still, for now, it sheds some much-needed light on the often counterintuitive world of quantum mechanics. The study is also a testament to how much research technology has progressed — until only a few years ago, we just didn’t have the necessary tools to create such materials.

“This result is of cosmic significance,” Abbamonte concluded.

The research was published in the journal Science.

Physicists think they might have found a dark boson — a dark matter particle

The mountains of data retrieved back in 2012 when physicists were trying to confirm the existence of the Higgs boson could yield a new and unexpected find — a new particle dubbed the Madala boson.

Proton-proton collisions events in which 2 high energy electrons and two high energy muons are observed. Image credits Taylor L, McCauley T/CERN.

The first evidence of the Madala boson was seen in the data recorded at CERN in 2012 from the Large Hadron Collider (LHC,) says the High Energy Physics Group (HEP) from South Africa’s Withstander University. The new particle’s case has since been strengthened by repeat experiments in 2015 and 2016.

“Based on a number of features and peculiarities of the data reported by the experiments at the LHC and collected up to the end of 2012, the Wits HEP group in collaboration with scientists in India and Sweden formulated the Madala hypothesis,” says Professor Bruce Mellado, team leader of the HEP group at Wits.

“The experiments at the Large Hadron Collider (LHC) display a number of hints in their data that are indicative of the existence of new bosons,” their report reads.

Its existence hasn’t yet been confirmed, but the group claims that if their ‘Madala hypothesis’ is correct, then we could finally begin to understand dark matter. This amounts to an estimated 27 percent of all the mass and energy in the observable Universe, but otherwise, it’s completely foreign to us. We can’t touch it, we can’t see it…the only way we know it’s there is because we can detect its gravitational pull — and nothing else.

So it’s hardly surprising that, despite years of trying to figure out, we have no clue what dark matter actually is. The way scientists are going about it today is to find out what it isn’t, hoping we’ll have enough data to explain it at some point in the future.

“Physics today is at a crossroads similar to the times of Einstein and the fathers of Quantum Mechanics,” said Mellado.

“Classical physics failed to explain a number of phenomena and, as a result, it needed to be revolutionised with new concepts, such as relativity and quantum physics, leading to the creation of what we know now as modern physics.”

When they confirmed the existence of the Higgs boson four years ago, physicists finally verified the Standard Model of Physics. But even the fully fleshed model can’t explain the existence or properties of dark matter. The Madala boson would do just that — if it’s real. As Mellado and his team explain, while the Higgs boson only interacts with known matter, the Madala boson seems to interact only with dark matter.

The four fundamental forces are gravity, electromagnetism and the weak and strong nuclear forces. Each force has a corresponding boson or force carrier that gives rise or mediates the forces between other particles. For instance, the electromagnetic force is carried by photons — perhaps the most famous particles — while weak and strong forces are carried by W bosons, Z bosons, and gluons, respectively. Though we’ve yet to find a force carrier particle for gravity, physicists predict there should be one, for now hypothetically called a graviton.

The discovery of the Higgs boson did not signify the discovery of a new force or family of particles, but the Madala boson might.

Details of the discovery are still scarce, but what we do know up to now has been outlined in the South African scientific collaboration with CERN’s 2015-2016 Annual Report (SA-CERN.) Here, the Madala boson is described as having a mass of around 270 giga electronvolts (GeV) – or roughly 270 billion electron volts. To put that into perspective, the Higgs boson has a mass of either 123.5 GeV or 126.5 GeV. The paper also details how the same repeat experiments that strengthened the case for the Madala boson also suggested there’s an even heavier potential new boson, weighing in at a whopping 750 GeV, waiting to be found…maybe. We don’t know. It’s all an educated guess at this point.

Evidence of the Madala boson’s existance on the left, and for the heavier boson on the right. Image credits SA-CERN.

So right now, we just have to play the waiting game until the teams come up with more evidence and the physics community gets a chance to analyze them. But should these new particles be confirmed, it will set the world of physics alight.

“The significance of the discovery of new bosons goes beyond that of the Higgs boson. The Higgs boson was needed to complete the Standard Model of Particle Physics,” the SA-CERN report reads.

“However, this boson did not signify the discovery of a new force or family of particles. The discovery of new bosons would be evidence for forces and particles formerly unknown. Therefore, and without a reasonable doubt, the discovery of new bosons would be worth a Nobel Prize in Physics.”


Since we’ve written this article, CERN has tweeted this:

So does this mean there isn’t such a thing as the Madala boson? Not necessarily, it just means that there isn’t any data to support its existence in the LHC measurements. Something obviously went wrong here — someone from HEP jumped the gun or their findings just didn’t stand up to scrutiny.

Stay tuned for more updates.

Hints of Higgs Boson spark floods of science papers

Almost 100 manuscripts have been submitted following last week’s tantalizing announcement from CERN.

Paul Ginsparg/arXiv

Paul Ginsparg/arXiv

Social media started going crazy on the 15th of December, abuzz with the rumor of finding a boson heavier than the elusive Higgs Boson. Something must be up because since then 95 research manuscripts have been posted to the preprint server arXiv discussing the hypothetical particle.

It all started when scientists working at the particle accelerator reported a very interesting signal, although we’re not quite sure what to make of it yet. Tiziano Camporesi, a spokesperson for the LHC’s CMS experiment, told Nature that he expects even more papers to come up in the near future.

“I am extremely curious to see what our theorist friends will cook up,” he said.

Gian Francisco Giudice, a physicist from CERN published a 32-page paper analyzing the findings from CERN at the same time public announcements were made. His paper already has 68 citations, although the statistical significance of these findings seems relatively low.

Pairs of photons (green) produced in LHC collisions suggest the existence of a boson with a mass of 750 gigaelectronvolts. Image credits: CERN.

Lisa Randall of Harvard University in Cambridge, Massachusetts says that studying this signal is time well spent.

“It doesn’t necessarily hurt for people to think about what would give you such a signal,” she says. “Even if the signal goes away, you often learn a lot about what’s possible.”


A view of the LHCb experiment at underground Point 8 on the Large Hadron Collider (LHC). The prominent tube is the LHC beam pipe, in which protons circulate at close to the speed of light (Image: Anna Pantelia/CERN)

New exotic subparticle confirmed by LHC scientists

Once with the discovery and confirmation of the Higgs boson, the Large Hadron Collider in Geneva proved its money worth and garnered international appraise. Despite the LHC is currently shutdown for its periodical maintenance (the restart procedure is well underway, with the particle accelerator expected to become fully operational again in 2015), physicists aren’t slaking. The data gathered from experiments performed at the LHC is enough to keep scientists busy for years to come. For instance,  the LHCb collaboration, who run one of four large experiments at the LHC, confirms the existence of a new exotic particle, first discovered in Japan a few years ago.

At the turn of the last century, things were much simpler for the lives of physicists. We knew all matter is comprised of molecules and atoms, which at their own turn are comprised of a nuclear core (made up of protons and neutrons) and an orbiting electron shell. Physics has long evolved past this basic knowledge however, once with quantum field theory. Following the first particle colliders, both in space and on Earth, physicists have found that particles are comprised of a number of truly elementary subparticles, like quarks, leptons or bosons. Then there’s a slew of so-called hypothetical subparticles predicted by supersymmetry, but as of yet unconfirmed.

Exotic hadron

A view of the LHCb experiment at underground Point 8 on the Large Hadron Collider (LHC). The prominent tube is the LHC beam pipe, in which protons circulate at close to the speed of light (Image: Anna Pantelia/CERN)

A view of the LHCb experiment at underground Point 8 on the Large Hadron Collider (LHC). The prominent tube is the LHC beam pipe, in which protons circulate at close to the speed of light (Image: Anna Pantelia/CERN)

In 2008 the Belle Collaboration in Japan reported the observation of a new exotic particle, the  Z(4430)–  (of negative charge). The initial readings suggested that the particle has a mass that puts it in a dense forest of charmonium states (particles made up of specific quarks like charm quark and charm antiquark), yet all particles in this state have a neutral charge.

This is where the LHC step in to elucidate. Researchers here performed more than 180 trillion collisions resulting in 25,000 decays of mesons  (quarks paired with antiquarks). After finally shifting through all the date, researchers have announced recently that the existence of Z(4430) with extremely high confidence: significance of 13.9 sigma, well above the usual 5 sigma threshold required to declare a discovery. The LHCb didn’t just confirm the particle, however, it went on to characterize its state – spin and polarity.

“The significance of the Z (4430) signal is overwhelming – at least 13.9 sigma – confirming the existence of this state,” says LHCb spokesperson Pierluigi Campana. “The LHCb analysis establishes the resonant nature of the observed structure, proving that this is really a particle, and not some special feature of the data.”

Now that the Z(4430)  particle has been confirmed by two independent experiments, physicists can concentrate on unraveling its nature. For instance, it’s believed the particle is the firmest evidence yet of a tetraquark – a four-quark state. LHC physicists believe the particle  is most likely to be made of a charm, anti-charm, down and anti-up quark. A truly exotic particle,  Z(4430)   isn’t likely to be alone. No doubt more similar findings will come off the LHC project, once it goes back online.

The findings were reported in a paper published in the journal Physical Review Letters.

Photograph of the prototype constructed by the GEM-TPC collaboration. (C) MIT

MIT ‘DarkLight’ experiment seeks to create dark matter in the lab

Mysterious and elusive, dark matter has escaped scientists time and time again; yet confirming its existence is quintessential to current efforts of studying the Universe. With this in mind, detecting dark matter has become one of the foremost goals in the physics of the 21st century. An experiment at MIT, called DarkLight, aims to prove or disprove a certain theory that provides a possible solution to uncovering dark matter by creating its constituent bosons in the lab.

Dark matter is said to make about 23% of the mass-energy density of the universe, in comparison to only 4% normal matter (the matter we can observe), while the rest of the mass-energy density is comprised of dark energy. Dark matter makes up more than half of the total mass of most galaxies, including our own Milky Way, and is known to extend well beyond the visible stars. If models are correct, than dark matter is ubiquitous, even in our solar system yet detecting it has proved to be a herculean challenge.  Since it was first proposed in the 1930s, numerous theories have tried to account for and provide ways of identifying dark matter. So far there have been no confirmed identifications of dark matter with any known — or postulated — candidate.

 Photograph of the prototype constructed by the GEM-TPC collaboration. (C) MIT

Photograph of the prototype constructed by the GEM-TPC collaboration. (C) MIT

One piece of the puzzle is currently being investigated by the DarkLight experiment at MIT. The experiment seeks to prove or disprove a theory which says dark matter is made up of  bosons in the 10 MeV to 10 GeV range – heavy photons dubbed A′ (pronounced “A-prime”). The exact mass of such a particle (if it exists) is unknown.

DarkLight will use Jefferson Lab’s Free Electron Laser to bombard an Oxygen target with a stream of high energy electrons with one megawatt of power, and hopefully create this form of theorized dark matter (A’ particles). Studying the  resonance peak at the A′ mass in the electron-positron invariant mass spectrum would provide the valuable clues necessary to prove or disprove the presence of dark matter through this experiment.

It might take a while before this will happen though. According to the report released by MIT, it will take a couple of years before the DarkLight experimental rig will become operational and another couple of years of smashing electrons to collect data before any conclusive ideas can be drawn.

via ExtremeTech

Higgs Englert

2013 Nobel prize in physics awarded to ‘God particle’ scientists: Peter Higgs and Francois Englert

Higgs Englert

Francois Englert (left) and Peter Higgs (right)

Just a few moments ago, the Royal Swedish Academy of Sciences awarded this year’s Nobel Prize in Physics to Francois Englert and Peter Higgs on Tuesday for their 1964 postulation of the existence of the Higgs boson. The elementary particle was finally confirmed in 2012 by a team of international researchers using the Large Hadron Collider at CERN.

The July 2012 discovery of the particle in the most powerful particle accelerator in the world, the Large Hadron Collider near Geneva, Switzerland, has been billed as one of the biggest scientific achievements of the last 50 years. The Higgs boson, also sometimes referred to as the God particle, is thought to be the elementary particle responsible for granting all matter with mass. It’s become obvious now how monumental this discovery is.

But why not last year? In 2012 everybody was expecting Englert and Higgs to win the physics prize, but instead the award went to two scientists (Haroche and Wineland ) for their work with light and matter, which may lead the way to superfast quantum computing and the most precise clocks ever seen. The  Royal Swedish Academy of Sciences often steers away from scientific premiers and chooses to opt for more mature research. This year, however, it was clear than Englert and Higgs shouldn’t be missed.

Swedish industrialist Alfred Nobel created the prizes in 1895 to honor work in physics, chemistry, literature and peace. Since 1901, the committee has handed out the Nobel Prize in physics 106 times. The youngest recipient was Lawrence Bragg, who won in 1915 at the age of 25. For the 2013 awards, so far the Nobel Prize in Physiology or Medicine has been announced: James E Rothman, Randy W Schekman and Thomas C Südhof  for their work on the mechanism that controls the transport of membrane-bound parcels or ‘vesicles’ through cells.

Elementary particles predicted by the Standard Model and discovered that make up the Universe. (C) AAAS

Higgs boson discovery confirmed after CERN scientists reviewed massive LHC data

The science of physics has entered a new era once with the discovery of the much sought-after Higgs boson in July 2012. The elementary particle thought to be responsible for granting matter its mass has been theorized for decades, but only with the deployment of the multi-billion Large Hadron Collider in Geneva could such a quest commence. Years of hard work, painstaking analysis, and a fine eye for detail have paid off eventually. Mixed emotions tried the team of researchers that headed the Higgs boson experiments after the monumental findings – what if they were wrong? Recently, an international panel of scientists has confirmed and cemented the discovery of the boson that has eluded physicists for all these years, after they reviewed massive amounts of data in the wake of the find.

The Higgs boson was first theorized in 1964 what of the need to fill in gaps in our understanding of the Universe. The particle was named for Peter Higgs, one of the physicists who proposed its existence, but it later became popularly known as the “God particle,” since its believed it grants all particles, and thus all matter, with size, shape, and mass.

“The preliminary results with the full 2012 data set are magnificent and to me it is clear that we are dealing with a Higgs boson, though we still have a long way to go to know what kind of Higgs boson it is,” said Joe Incandela, a physicist who heads one of the two main teams at CERN, each involving several thousand scientists.

Elementary particles predicted by the Standard Model and discovered that make up the Universe. (C) AAAS

Elementary particles predicted by the Standard Model and discovered make up the Universe. (C) AAAS

In order to confirm its existence and learn more about the subatomic particles, both the Atlas and CMS teams went through and analyzed more than two and a half more data than they had at their disposal when they first announced they had come across a particle that is very Higgs-like. The most important properties of a subatomic particle are considered to be it spin and parity.

“Now we’ve got more precise questions: is this particle a Higgs boson, and if so, is it one compatible with the Standard Model?” said Tony Weidberg, Oxford University physicist and a collaborator on the Atlas experiment.

At the  Moriond conference in Italy, scientists at CERN reported that their entire data sets from 2011 and 2012 strongly suggest that the new found particle’s spin is zero, making it the first elementary particle with such a property. Luckily, the finds are on par with Standard Model of Physics predictions so far. Another theory of physics however, called supersymmetry, predicts that in fact a number of various and different Higgs bosons exists.

“The preliminary results with the full 2012 data set are magnificent and to me it is clear that we are dealing with a Higgs boson, though we still have a long way to go to know what kind of Higgs boson it is,” said  Incandela.

This will require even more data and experiments to determine. Considering the LHC is slated for a two year shut down for maintenance, it might take a while.

LHC reaches highest energy yet

It’s been pretty quiet lately at the LHC, despite the fact that things seemed to be getting pretty hot, as the elusive Higgs boson appeared to be cornered. However, CERN cracked up the volume, announcing they achieved a record collision energy of 8 TeV.

LHC recap

The Large Hadron Collider is the world’s largest and highest energy particle accelerator, built by the European Organization for Nuclear Research (CERN). Through it, particle physicists hope to answer some of the most challenging questions in science, finding the fundamental laws which govern our world – particularly the Higgs boson, the particle which lies at the base of the Standard Model. The Standard Model is a theory concerning the electromagnetic, weak, and strong nuclear interactions, which practically seeks to explain how particles interact with each other at the most basic levels. Finding the Higgs boson will prove it, showing that it doesn’t exist will disprove it – either way, it will be a tremendous leap for particle physics and science overall.

In order to do this, they accelerate particles more and more until they reach dazzling energies of up to a few TeV (Terra-electron Volts). By definition, an electron Volt is the amount of energy gained by the charge of a single electron moved across an electric potential difference of one volt – and a few TeVs is a lot.

Highest energy yet

“The experience of two good years of running at 3.5 TeV per beam [7 per collision] gave us the confidence to increase the energy for this year without any significant risk to the machine,says CERN’s director for accelerators and technology, Steve Myers. “Now it’s over to the experiments to make the best of the increased discovery potential we’re delivering them!”

While it may not be a huge growth, it will almost certainly be enough to take the LHC up to a level where certain particles would be produced much more copiously, including those predicted by supersymmetry. This is extremely exciting news, especially after last year, CERN produced what can only be described as ‘tantalizing hints’ of the Higgs boson, which would show why everything in the universe has mass.

The new, higher levels of energy, will increase the chances of producing such particles, if they exist, but it will also increase the amount of background noise, so the researchers need to run tests at these energies until the rest of the year to get a clear enough picture of what is really happening. But that being said, the LHC is truly beginning to unlock its full potential, and this year promises to be just fantastic for physics.

“The increase in energy is all about maximising the discovery potential of the LHC,” says CERN research director Sergio Bertolucci. “And in that respect, 2012 looks set to be a vintage year for particle physics.”

Their ultimate goal is to get to 7 TeV per beam, which will probably happen some time at the end of 2014.

Via TG Daily

Physicists will have to hold their breath a little longer – ‘God particle’ not found yet

The big news about the discovery of the Higgs boson seem farther than some might have expected, even though researchers reported ‘tantalizing hints’ of the elusive particle; physicists will have to hold their breath a little longer.

About a week ago, rumors started stirring up the physics world, as the people at CERN zoomed in on the only missing particle from the Standard Model; however, scientists so far have only hints, and nothing concrete to show.

“I think we are getting very close,” said Vivek Sharma, a physicist at the University of California, San Diego, and the leader of the Higgs search at LHC’s CMS experiment. “We may be getting the first tantalizing hints, but it’s a whiff, it’s a smell, it’s not quite the whole thing.”

The long sought particle seems to be cornered now, and indeed, as the team working at CERN announced, we will soon be able to either prove or disprove its existence – but physicists seem adamant that it exists, now more than ever. Today’s announcement was believed by many to be something definitive – but this wasn’t the case. Though this isn’t the final answer we have been waiting for, it is definitely an exciting leap forward.

“It’s something really extraordinary and I think we can be all proud of this,” said CERN physicist Fabiola Gianotti, spokesperson for the LHC‘s ATLAS experiment, during a public seminar announcing the results today.

The entire scientific world seems proud of the people at the LHC.

“These are really tough experiments, and it’s just really impressive what they’re doing,” Harvard University theoretical physicist Lisa Randall said.

The Standard Model is an extremely ambitious theory that seeks to unify interactions between all the elementary particles in the Universe; so far, the only particle yet to be observed from this model is the Higgs Boson – so finding it is quite a big deal. If it were proven not to exist, that would be good too – we would know we have to search for something else.

LHC – we have a collision !

“It’s a great day to be a particle physicist,” said CERN director general Rolf Heuer. “A lot of people have waited a long time for this moment.”


The LHC had been going on a promising streak for quite a while now; however, the encountered problems (mostly engineering, but also physics) were huge. Imagine firing arrows on the face of the ocean and making them collide – that was the task for the engineers and physicists at CERN.

They did achieve collisions before, but this is the first one to reach a significant energy, 7 Tev (teraelectronvolts, which is pretty much 1.6 x 10^-7 Joules; doesn’t sound like much, unless you’re a particle). The previous record was at about 2.36 TeV.

Achieving a collision of this level marks the official start of the LHC programme and the next 18 to 24 months are expected to produce trillions of high-energy collisions. So what does this mean ? If they don’t find the Higgs boson, does that mean we’ll have to rewrite physics ? Probably not. It will just show us which of the current competing theories is right. But what happens if they are all wrong ? Well… for the time being, let’s just hope that won’t happen and wait for the current updates from Cern.

You can watch a live webcast from the LHC , twitter updates or track their status in graphical form. Either way, this collision marks the beginning of a new era in modern physics.

Oh, PS : the world is still here.

Dark matter discovered, or at least rumor has it

Well, rumors and science never go well together, especially when it goes to something as important as the work going on at LHC, who just got back in business a short while ago.

Dark matter map

Dark matter map

My first reaction was to believe it was just a rumor. However, after hearing and reading many articles on this I still find it hard to believe. However, what really made me think was that everybody was going on and saying how this find would bring a major change in our understanding of the Universe. I think it wouldn’t; let me explain.

First of all, I don’t know if they discovered dark matter or not yet. I’m waiting for the official announcement as much as the next guy. It would be indeed a major breakthrough, but it wouldn’t change our understanding, it would just confirm it. Researchers have long theorized that dark matter exists and that it is responsible for about 90% of the Universe’s mass. They can’t see it, but deducted it exists because of the gravitational forces. So basically, a lot of our understanding of the Universe relies on the fact that dark matter exists.

The big change would be if they recreated the right conditions and didn’t find it! It would be so significant, that basically we’d have to rethink modern physics. Same goes for the Higgs boson. I mean, with current knowledge, scientists have been able to demonstrate that these particles exist; if they are indeed found, we’re right, we can move on to finding more things, hurray. But if they’re not… things really get messy.

So, what do you think the LHC will bring? Will it break once again, shed light on everything it can, destroy the world, what? Tell everybody on the Facebook page

CERN is back in business with the first collisions


The researchers and engineers operating the Large Hadron Collider have smashed together for the first time protons, in what is considered a huge step forward by pretty much everybody working at the huge physics experiment.

The particles were accelerated on Monday, through the LHC’s 27 km and then ‘drove’ into each other, in an attempt to recreate the conditions that took place a few moments after the Big Bang. This attempt is crucial for our understanding of physics, and here’s why.

Researchers are trying to find signs of what has been called the Higgs boson. This subatomic particle lies at the foundation of our understanding of particle physics, but despite the fact that it’s so important, we have yet to actually discover it. It’s expected that the LHC will provide the sought after particle and confirm our current theories. However, if not, we may be forced to rethink pretty much all of our particle physics.

The people operating this amazing particle accelerator seem quite ecstatic, as you can see below.


“It’s a great achievement to have come this far in so short a time,” said Cern’s director-general Rolf Heuer. But we need to keep a sense of perspective – there’s still much to do before we can start the LHC physics programme.”

Fabiola Gianotti, spokesperson for the Atlas scientific team, commented: “This is great news, the start of a fantastic era of physics and hopefully discoveries after 20 years’ work by the international community.”

We’ll keep you posted with what’s going on at the LHC, and we’re pretty psyched to see how things are going. There’s definitely more to come.