Tag Archives: bioreactor

Algae bioreactor sucks as much carbon as an acre of trees

Credit: Hypergiant Industries.

Tackling our current climate emergency requires not only an immediate transition towards 100% renewable energy but also strategic mitigation of some of the CO2 in the atmosphere. Yes, ‘plant more trees‘ is part of the solution but it’s not enough, which is why some research groups are looking into alternative carbon-capturing methods.

One exciting new proposal involves an algae bioreactor that can capture and sequester as much carbon as an acre of trees, occupying just a fraction of this surface area.

The 1.7-cubic-meter (63-cubic-foot) prototype, known the Eos Bioreactor, was developed by a startup called Hypergiant Industries.

Algae convert carbon dioxide from the atmosphere, power plants or steel processing exhaust into algae oil. This can then be used as food as a rich source of protein or to produce valuable goods like carbon fiber, a lightweight, high-strength material.

“This device is one of our first efforts focused on fixing the planet we are on,” said Hypergiant CEO Ben Lamm in a statement. “We hope to inspire and collaborate with others on a similar mission.”

A study performed recently by Swiss researchers at ETH Zurich found that there’s enough room in the world left for planting roughly one trillion trees. If allowed to mature, these extra forests would store 205 gigatons of carbon, roughly equal to two-thirds of all the carbon humans have added to the atmosphere since the Industrial Age. This would bring down heat-trapping greenhouse gases to levels not seen for nearly 100 years.

Planting these many trees, however, is a massive undertaking. Realistically, we’re only going to manage to plant a fraction of this magic trillion. This is why devices such as this bioreactor — which has a CO2 absorption equivalent to 400 trees — is so valuable.

According to Futurism, the company plans on making the blueprint for the bioreactor open source so that developers and engineers from all over the world can propose improvements to the design.

Brain like tissue developed in lab

Scientists grow brain-like tissue in petri dish

Most medical research looking to identify the mechanisms of a disease or test treatments rely on animal models. While very useful, mice for instance (a favorite lab pet for researchers) do not have nearly the same brain structure or genes as humans. Even if some genes and proteins scientists target are the same both in mice and humans, it will still be unclear whether a treatment will work for both organisms, something very important to keep in mind especially when preparing clinical trials.

The most sound alternative to this would be to culture human organs and cells for testing, and great strides forward have been made in this direction in the past decade alone.  Jürgen Knoblich and Madeline Lancaster, both researchers working in labs at the Austrian Academy of  Sciences,  are also part of this collective scientific effort of culturing human cells for research purposes. The researchers successfully grew hundreds of 4-mm white blobs of neurons from stem cells induced from adult skin cells. Remarkably, these blogs developed specialized regions, similar to the way a human brain would develop in utero.

Brain like tissue developed in lab

(c) Nature

Previously we’ve reported how other scientists had grown human lungs, kidneys and even a heart that beats on its own (all primitive versions, not really comparable yet to the natural counterpart), while other efforts have concentrated on culturing intestines, pituitaries, and simple retinas. Testing treatments on these lab grown structures helps scientist surmount some of the challenges that come with animal models, including animal cruelty in some cases. The brain, however, is far more complex than any of these and as such is very difficult to replicate in the lab.

Knoblich and colleagues first collected fibroblasts (collagen generating skin cells), and induced these to become stem cells (induced pluripotent stem cells). These cells were placed in a nutrient rich gel, which allowed them to replicate into a sort of big ball of cells, akin to the embryo development stage of typical brain in utero. Some of these cells became precusor cells for neural tissue. The innovative part came in the last stage, when the researchers placed their cultured cells into a bioreactor which helped spread and distribute nutrients into the primitive brain-like tissue much in the same blood vessels would deliver the nutrients in a ‘conventional’ developing brain. The resulting brain-like structures are called cerebral organoids.

“If you’re studying brain development, you would like to see the cells develop somewhat like a brain,” says Wynshaw-Boris, who wasn’t involved in the new study. “These organoids gradually differentiate into many different types of cells. It’s not really a brain, but seems to recapitulate brain development. This is much better than any of the past efforts, in terms of the number and types of cells.”

Using the spinning nutrient distribution provided by the bioreactor, the cultured organoids reached new levels of complexity compared to previous attempts, allowing them to develop in regions similar in composition (but not in complexity) to the brain’s cerebral cortex, choroid plexus, retina, and meninges.

A brain in a petri dish

What’s most interesting about the research is that not does it only show it’s possible to culture a brain or at least a brain-like tissue in the lab, but also to use it as a model to study diseases. The researchers grew organoids using skin cells taken from a patient with microcephaly – a disorder characterized by a dramatic reduction in the size of a person’s brain. The neural tissue hared many of the trademark features of microcephaly, including reduced size. The scientists infer that in people with microcephaly, the founding neural cells don’t replicate and differentiate properly in the developing embryo, later leading to a smaller brain.

Like most current attempts at culturing human organs, the cultured organoids are simple and lack the far reaching complexity of a mature brain – they’re millions of miles apart. . A developing brain contains blood vessels that deliver nutrients and energy with which to grow, but modern science hasn’t been able to fully duplicate those blood vessels yet – the same problem that pesters other researchers hard at work culturing human hearts for instance. In fact, Knoblich believes we won’t ever be able to develop a functioning human brain, the way we’re used to thinking of it at least. Even so, it would raise some serious ethical questions. Deep down in a lab grown functioning brain’s recesses, in a cold petri dish, would a human consciousness lurk? Would you be essentially growing a human being? Such discussions have been a subject of debate for many years concerning abortions, and this new research adds further food for thought.

Findings were reported in the journal Nature.

Significant breakthrough in biofuels

I was writing a while ago that major biofuel production is not really that far away and the good news is things seem to be moving in that direction. The importance of biofuels has been underlined as a possible solution to fight the crisis, but the big problem was that creating such alternative fuels required too big amounts of power, despite numerous options that were considered (sugar, waste materials and even algae).

biofuel_logo11However, an innovative device constructed by researchers from the University of Sheffield promises to give the necessary power lowering necessary to make this method viable. This invention was awarded with a prestigious international award (Moulton Medal from the Institution of Chemical Engineers) and it’s estimated that it will make biofuel production efficient.

The invention is basically a bioreactor that creates microbubbles using 18% less energy. Microbubbles are miniature gas bubbles (measuring less than 50 microns in diameter) which means they can transfer materials in a bioreactor much more faster than with regular bubbles, thus using less energy. This innovative approach has the whole scientific world excited and it’s currently being tested with a local water company, and it’s also estimated that the necessary electricity current will be 30% lower;we will post updates as they are released by the researchers.

Professor Will Zimmerman, from the Department of Chemical and Process Engineering at the University of Sheffield, said: “I am delighted that our team’s work in energy efficient microbubble generation is being recognized by the Institution of Chemical Engineers. The potential for large energy savings with our microbubble generation approach is huge. I hope the award draws more industry attention to our work, particularly in commodity chemicals production for gas dissolution and stripping, where energy savings could enhance profitability. There are many routes to becoming green, and reducing energy consumption with the same or better performance must be the most painless.”

Professor Martin Tillotson, from Yorkshire Water, added: “Many of our processes use forced air in order to treat water and wastewater streams and, given the huge volumes, it is very costly in electricity and carbon terms. This technology offers the potential to produce a step-change in energy performance. We are pleased to be working with Professor Zimmerman and his group in developing the microbubble technology, and delighted with the recognition they have received from the Moulton Medal award.”