Tag Archives: binary

Rho Ophiuchi.

Biomarker molecule discovered “in abundance” around alien star, but still no life

A large number of biomarker molecules have been found around a young star in the Rho Opiuchi region of space. The find sadly casts doubt to the substance’s value as a biomarker, but does further our understanding of star-birth.

Rho Ophiuchi.

The Rho Ophiuchi stellar nursery viewed by ESA’s Herschel observatory. The image combines Herschel observations at 70 microns (blue), 160 microns (green) and 250 microns (red), and spans 7.9°by 4.6°; north is up and east to the left.
Image credits ESA.

The European Space Agency (ESA) has some good and bad news to share with all of us today. The good news is that they’ve found a biomarker molecule — a byproduct of biological activity — in abundance in a comet and around a young, alien binary star. Pack those hooray’s back in, though, because there’s a catch. Instead of indicating the presence of extraterrestrial life, this discovery instead casts doubt on this substance’s merits as a biomarker, signaling that it’s probably not as clear-cut a sign of life as we once thought it was.

CH3Cl giveth, CH3Cl taketh away

Using a telescope to spot aliens — whether they be microscopic or human-sized — throughout the vast stretches of nothingness that is outer space is obviously not very doable. Instead, scientists have to rely on indirect methods of assessing a planet’s likelihood of harboring life. One of these methods involves checking for certain chemical compounds that are by-products of organic processes. We call them biomarkers, and any way you can detect them, from soil or water samples taken by rovers to atmospheric analysis by telescopes or spacecraft, is fair game: if you find a biomarker, the theory goes, life can’t be far away.

One of these biomarkers, in fact the most common one here on good old Earth, is methyl chloride (CH3Cl). It belongs to a class of chemical compounds known as organohalogens (organic compounds that also carry at least one atom in the halogen family — fluorine, chlorine, bromine, or iodine — and is also known by the name of chloromethane. For all intents and purposes, it’s exactly like methane (the stuff farts are made of), only one of the molecule’s hydrogen atoms gets swapped for a chlorine one. Since it’s mostly produced through biological processes, we use it as a biomarker.

Recently, however, the ALMA (Atacama Large Millimeter/Submillimeter Array) telescope in Chile found methyl chloride around IRAS 16293-2422, a binary star system some 400 light-years away from Earth, in the Rho Ophiuchi star-forming region. This marks the first time any organohalogen has been picked up in space. Sadly, this isn’t the beginning of an interstellar friendship — rather, the discovery erodes methyl chloride’s reliability as a biomarker.

Comet delivery to planets.

In addition to inheriting ingredients during the planet-forming processes, comets are also believed to have delivered some of the basic ingredients needed for life to Earth, leading to life as we know it today.
Image credits ESA.

Its presence around such a young star couple suggests that this substance may also be released during the planetary formation phase of a star system. To get a better idea of how it came about, the team turned to comets, bodies which can be used as ‘time capsules’ from the birth of stars, as they preserve the original chemical composition of the clouds of dust and gas solar systems are made of.

Their comet of choice was Comet 67P/Churyumov–Gerasimenko, handily visited by ESA’s Rosetta mission between 2014 and 2016. Sifting through the data collected during the mission, the team found it also contained an abundance of methyl chloride, further strengthening the theory that it represents a by-product of the planetary formation phase instead of the presence of life. The peak for methyl chloride was recorded in May 2015, when Churyumov–Gerasimenko was approaching the Sun.

“We found it but it is very elusive, one of the ‘chameleons’ of our molecule zoo, only present during short times when we observed a lot of chlorine,” says Kathrin Altwegg, principal investigator of the project.

So no alien life right now — bummer. But that doesn’t mean the search is off — actually, we now have an even better idea of what to look for. This may just be the lucky break we needed.

Polynesian people used binary numbers 600 years ago, way before Leibnitz

Mangareva Island. Via Wikpedia.

Binary arithmetic, the basis of all virtually digital computation today, is usually said to have been invented at the start of the eighteenth century by the German mathematician Gottfried Leibniz. But a new study shows that the system might have actually been invented way before that, in the 1400s, by people of the tiny Pacific island of Mangareva in French Polynesia.

The device you are using to read this relies on binary numbers – no matter what it is (unless you printed it or something). Pure binary arithmetic was invented because some calculations are easy to do it than in base 10 (which possibly emerged because people have 10 fingers). But the discovery, in such an isolated place and population, seems to suggest that some of the advantages of the binary system adduced by Leibniz might create a cognitive motivation for this system to arise spontaneously – even in a society with virtually no technology.

How base 2 works

With base 2, numbers are enumerated as powers of 2: instead of units, tens, hundreds and thousands (which are 10 to the power of 0, 1, 2 and 3), you have the digits of a binary number refer to 1, 2, 4, and so on (2 to the power of 0, 1, 2, 3, etc). Every number in the base of 10 has its correspondent in the base of 2 (and in any base, for that matter). Leibniz pointed out in 1703 that to do simple arithmetic in binary, such as addition and multiplication can be done very simply, following easy rules. The downside of binary is that as you go up to higher and higher numbers, you’re going to end up with more and more digits, which are just tedious to write.

Mangarevan transactions

Mangareva is a volcanic island that probably had a population of several thousands, and had only rare, occasional encounters with Europeans. It had a highly stratified society which ate mostly seafood and roots. Their society was built in such a way that almost everybody payed some kind of tribute to someone. The regular folk payed some chieftain, he payed a bigger chieftain, and so on. In order to be successful with their very common transactions, they had to develop an easier system to quantify the trade and the tributes.

De Agostini/Getty Images

Andrea Bender and Sieghard Beller of the University of Bergen in Norway, the authors of the latest study found that the former Mangarevans combined base-10 representation with a binary system. They had number words for 1 to 10, and then for 10 multiplied by several powers of 2. Their word takau (which Bender and Beller denote as (K) means 10; paua (P) means 20; tataua (T) is 40; and varu (V) stands for 80. In this notation, for example, 70 is TPK and 57 is TK7. While they note that this is not a true binary, it retains pretty much all the advantages, most notably, it becomes easier to do calculations: 2 × K = P and 2 × P = T.

“It’s puzzling that anybody would come up with such a solution, especially on a tiny island with a small population,” Bender and Beller say. But they add: “This very fact also demonstrates just how important culture is for the development of numerical cognition — for example, how in this case dealing with big numbers can motivate inventive solutions.”

Black hole 5 times heavier than the Sun found in binary star system

Visual representation of a binary system

 

The discovery of a new black hole is always an interesting event; this time, researchers from the Instituto de Astrofísica de Canarias (IAC) have managed to get the first spectroscopic data from the binary system in case, and found that it contains a black hole, which is quite rare, at least according to out knowledge of the Universe.

X-ray binaries are formed from a compact object (neutron star, black hole, etc) and a regular star. The more compact object slowly ‘sucks’ material from the other star and adds it to its own, creating a spiral disk around it. However, out of the estimated 5.000 binary systems in our galaxy, no more than 20 contain a black hole.

The system in case, XTE J1859+226, is a ‘transient X-ray binary’.

“Transient X-ray binaries are characterised for spending most of their life in a state of calmness, but occasionally entering eruption stages, during which the rhythm of acretion of matter toward the black hole is triggered,” Jesús Corral Santana explains, an astrophysicist from the IAC, who led the work published in the Monthly Notices of the Royal Astronomical Society (MNRAS).

If the compact object is more than three times heavier than the Sun, then it can only be a black hole, and in this case, the object was 5.4 times heavier than our star.

“With this result we add a new piece to the study of the mass distribution of black holes. The shape of this distribution has very important implications for our knowledge about the death of massive stars, the formation of black holes, and the evolution of X-ray binary systems,” the IAC astrophysicist adds.