What is Gondwana: the supercontinent

Gondwana used to be a supercontinent, from around 550 million years ago to approximately 180 million years ago, alongside Laurasia. Gondwana incorporated present-day South America, Africa, Arabia, Madagascar, India, Australia, and Antarctica.

The Earth is a planet alive.

That shouldn’t surprise anyone — after all, our planet is bustling with life on the surface. But it goes deeper than that, literally. The atmosphere, the magnetic field that prevents solar radiation from frying us alive, the terrain on which we live — these are all the product of lively processes taking place under the surface.

For most people, the world around us seems like a very stable place. Its shape seems, pardon the pun, set in stone. But the continents we know today are only a temporary arrangement, and they looked very different in Earth’s earlier history.

Be patient enough, and you’ll see the earth itself spring to life — it moves, breaking apart or coming together all over the planet. This is the story of the last in a breed of geological titans, a supercontinent we named Gondwana.

A different Earth

Some 500 million years ago, during the late Ediacaran period, tectonic motions brought today’s Africa, South America, Australia, Antarctica, India, the Arabian Peninsula and Madagascar into a single, massive piece of land. This was the early version Gondwana, stretching from the Equator almost to the south pole. Its climate was mild, however, as the world was a warmer place back then. Multicellular organisms had developed by this time, but they were primitive. The few fossils we’ve found from this period show a biota consisting of segmented worms, round creatures resembling modern jellyfish, and frond-like organisms.

More continents collided with this early Gondwana over time to form Pangaea, the “whole Earth,” roughly 300 million years ago. It was immense by any stretch of the imagination, all of the planet’s landmass was fused into one block dominating the southern hemisphere, surrounded by the biggest ocean in history. Then, 20 to 70 million years later, magma plumes from the Earth’s core started burning through the crust like a blowtorch, creating a rift between what we know today as Africa, South America, and North America.

Pangea’s breaking-up stages.
Image credits U.S. Geological Service.

Convection cells associated with these plumes widened the fissure into a fully fledged Tethys ocean, separating a northern supercontinent called Laurasia — today’s North America, Europe, and Asia — from a southern one, our fully formed Gondwana. It has lost some of its original bits to Laurasia — such as Florida and parts of Georgia — but still contains all the landmasses we see today in the southern hemisphere. We’re now in the Jurassic period. Dinosaurs are roaming about, most of the world is covered in lush rainforests, and the last supercontinents are poised to break up.

It’s not you, it’s tectonics

The break-up didn’t happen at once, however. Gondwana fragmented in stages. Sometime between 170 million and 180 million years ago, modern Africa and South America began breaking apart from the rest of Gondwana. They stayed fused for about 30 to 40 million years until the South Atlantic Rift broke them up, opening the ocean (with the same name) between them.

That’s why South America’s eastern coast and Africa’s western coast look like they’d fit together snugly — at one point, they actually did.

South America and Africa with the approximate location of their Mesoproterozoic (older than 1.3 Ga) cratons (old and stable parts of the crust.)
Image credits Woudloper / Wikimedia.

At about the same time as the South Atlantic Rift was opening up, the easternmost part of the continent, Madagascar and India, split from the rest, opening the central Indian Ocean. The two stayed fused together until the Late Cretaceous period, after which India made a beeline for Eurasia —  50 million years ago, the collision between the two was so violent it raised the Himalayas.

At this point basically all that’s left of former Gondwana is Australia and Antarctica — too little to be counted as a supercontinent. They did stay fused together until around 45 million years ago, though. After that, Antarctica moved south and froze over (due to a combination of the climate cooling down and shifting ocean currents around the new landmasses) and Australia went adrift towards the north, colliding with southern Asia. The collision is still taking place today, as the Australian plate is advancing north at a rate of about 3 centimeters (1.2 inches) a year.

Today’s tectonic plates. Red arrows indicate primary direction of movement.
Image credits U.S. Geological Survey.

We still don’t know exactly what caused the continent to break apart. One theory holds that hot spots formed beneath it, creating rifts that broke the supercontinent apart. In 2008, however, University of London researchers suggested that Gondwana instead split into two tectonic plates, which then were then further fragmented.

How we figured all of this out

The uncanny resemblance between the shape of western Africa and eastern South America was first officially noted by Sir Francis Bacon in 1620 as accurate maps of the two continents became available. In 1912, Alfred Wegener, a German meteorologist, proposed that the two continents formed a single body at one point — in fact, he was the first to envision the great supercontinent Pangaea. However, geologists at the time strongly criticised his theory, citing his lack of formal training in the field. Geologists then couldn’t believe that something as huge as a continent could move; they simply lacked knowledge of a system that would explain how this could happen; they had no known way to reliably recreate the movements.

Alexander Du Toit, a South African geologist, further elaborated on the theory in his 1937 book Our Wandering Continents. Seeing the opposition Wegener’s theory encountered, he carefully amassed evidence of the two continents’ past link — the occurrence of glacial deposits (or tillites) and rock strata on both sides of the Atlantic, as well as similar fossil flora and fauna found exclusively on southern continents, especially the fern species Glossopteris. His theory gained traction with scientists from the southern hemisphere but was still widely criticised by geologists in the northern hemisphere. They envisioned land bridges spanning from continent to continent to explain how one species could be found on both sides of an ocean, even to the point where these bridges would circle whole continents.

However, the theory of plate tectonics became widely embraced by the 1960s when the Vine–Matthews–Morley hypothesis was formed following paleomagnetism (or fossil magnetism) measurements of the ocean’s floor. These measurements recorded the magnetic properties stored in ocean-bottom rocks as they formed over time, proving that rift areas add new material to oceanic plates, pushing continents apart.

This cemented the theory of tectonic plates, and furthermore helped us understand how these imense landmasses moved in the past — including how Gondwana came to be and ultimately broke up.

How magnetic stripes form on the sea floor.
Image credits Chmee2 / Wikimedia.


Gondwana is the last of the supercontinents the world has seen — so far. Plates are being formed and consumed today, just as they have been since the Earth’s crust cooled down to a solid. The same tectonic processes that made and shattered Gondwana and the supercontinents before it functions just the same, powered by the huge quantity of heat trapped in the depths of the Earth. They will keep on mashing continents together, so it’s almost guaranteed that a new supercontinent will form in the future.

But considering the timeframes geology works with, we’re probably not going to be around any longer to see it happen.


19 thoughts on “What is Gondwana: the supercontinent

  1. Gnarlodious

    <i><b>We still don’t know exactly what caused the continent to break apart</b></i>
    That's because science got it wrong and now it doesn't make sense. In fact, the planet has been expanding, and all the blue shown never existed. The earth's primordial crust still exists as continents but the oceans are the areas of expansion. This essentially means that the planet is 5 times larger than it was at its birth. It also means that there was much less gravity in the distant past, which is why animals such as megafauna and dinosaurs got so big. It also explains mass extinctions, because every time the planet expanded the largest animals suddenly were unable to motate and died off, leaving the smaller mammals to thrive.

  2. Heidi Moulton

    The upward limits on an organism's size are more likely caused by the logistics of oxygen transfer, which break down along with the ability of bone to withstand stress when size becomes too large. Stephen Jay Gould explores the reasons for upper size limits several times in his series of essay-books, from the standpoint of paleontology. Variations in the density of Earth overall don't really change its mass at all, but do change its apparent size and its surface area. This would not affect its gravity.

  3. Heidi Moulton

    I do think it's safe to say that the earth behaves exactly as it would be expected to behave as a conglomeration of materials of varying properties, and that the principles of fluid dynamics predict and describe the phenomenon of plate tectonics.

  4. Pingback: Giant, ancient bat discovered in New Zealand could walk on all fours – nets.watchlearndoprofit.com

  5. Pingback: Giant Extinct Bat Walked on Four Legs Through New Zealand’s Prehistoric Forests Millions of Years Ago – Michael Jackson

  6. Pingback: 5 Reasons Why Australia Is Such a Great Place to Be - The Adventure begins after 30

  7. Pingback: Разделительные валы, материки и океаны. Часть 2. | The Bridge

  8. Pingback: Video: The New Zealand Wilds – Novel Hub

  9. Pingback: Video: The New Zealand Wilds

  10. Pingback: Zealandia, the world’s 8th continent, linked to the forging of the Pacific Ring of Fire – ZME Science – Hotnewsplus

  11. Pingback: Paleontologists uncover 66-million-year-old bizarre mammal that shouldn’t exist – Anonymous Black

  12. Pingback: Map of ‘Lost’ Continent Zealandia That Disappeared 23 Million Years Ago Ultimately Revealed! – Jamakeyah

  13. Pingback: Map of ‘Lost’ Continent Zealandia That Disappeared 23 Million Years Ago Ultimately Revealed! – Esuperseller

  14. Pingback: Tarantulas are *everywhere* and now researchers know why | News Logged

  15. Pingback: Tarantulas are *everywhere* and now researchers know why – GotoNews

  16. Pingback: Tarantulas are *everywhere* and now researchers know why – Everyday News Update

  17. Pingback: new species of ancient rhino was taller than a giraffe, heavier than 4 elephants | News Logged

  18. Pingback: Dog-sized scorpion was king of the sea 440 million years ago | NewsLogged

  19. Pingback: Dog-sized scorpion was king of the sea 440 million years ago

Leave a Reply

Your email address will not be published. Required fields are marked *